- re_union
-
⊢ ∀P Q. P re_union Q = (λx. P x ∨ Q x)
- re_intersect
-
⊢ ∀P Q. P re_intersect Q = (λx. P x ∧ Q x)
- istopology
-
⊢ ∀L.
istopology L ⇔
L ∅ ∧ L 𝕌(:α) ∧ (∀a b. L a ∧ L b ⇒ L (a re_intersect b)) ∧
∀P. P ⊆ L ⇒ L (BIGUNION P)
- topology_TY_DEF
-
⊢ ∃rep. TYPE_DEFINITION istopology rep
- topology_tybij
-
⊢ (∀a. topology (open a) = a) ∧ ∀r. istopology r ⇔ open (topology r) = r
- neigh
-
⊢ ∀top N x. neigh top (N,x) ⇔ ∃P. open top P ∧ P ⊆ N ∧ P x
- closed
-
⊢ ∀L S'. closed L S' ⇔ open L (COMPL S')
- limpt
-
⊢ ∀top x S'. limpt top x S' ⇔ ∀N. neigh top (N,x) ⇒ ∃y. x ≠ y ∧ S' y ∧ N y
- ismet
-
⊢ ∀m.
ismet m ⇔
(∀x y. m (x,y) = 0 ⇔ x = y) ∧ ∀x y z. m (y,z) ≤ m (x,y) + m (x,z)
- metric_TY_DEF
-
⊢ ∃rep. TYPE_DEFINITION ismet rep
- metric_tybij
-
⊢ (∀a. metric (dist a) = a) ∧ ∀r. ismet r ⇔ dist (metric r) = r
- mtop
-
⊢ ∀m.
mtop m =
topology (λS'. ∀x. S' x ⇒ ∃e. 0 < e ∧ ∀y. dist m (x,y) < e ⇒ S' y)
- ball
-
⊢ ∀m x e. topology$B m (x,e) = (λy. dist m (x,y) < e)
- mr1
-
⊢ mr1 = metric (λ(x,y). abs (y − x))
- TOPOLOGY
-
⊢ ∀L.
open L ∅ ∧ open L 𝕌(:α) ∧
(∀x y. open L x ∧ open L y ⇒ open L (x re_intersect y)) ∧
∀P. P ⊆ open L ⇒ open L (BIGUNION P)
- TOPOLOGY_UNION
-
⊢ ∀L P. P ⊆ open L ⇒ open L (BIGUNION P)
- OPEN_OWN_NEIGH
-
⊢ ∀S' top x. open top S' ∧ S' x ⇒ neigh top (S',x)
- OPEN_UNOPEN
-
⊢ ∀S' top. open top S' ⇔ BIGUNION {P | open top P ∧ P ⊆ S'} = S'
- OPEN_SUBOPEN
-
⊢ ∀S' top. open top S' ⇔ ∀x. S' x ⇒ ∃P. P x ∧ open top P ∧ P ⊆ S'
- OPEN_NEIGH
-
⊢ ∀S' top. open top S' ⇔ ∀x. S' x ⇒ ∃N. neigh top (N,x) ∧ N ⊆ S'
- CLOSED_LIMPT
-
⊢ ∀top S'. closed top S' ⇔ ∀x. limpt top x S' ⇒ S' x
- METRIC_ISMET
-
⊢ ∀m. ismet (dist m)
- METRIC_ZERO
-
⊢ ∀m x y. dist m (x,y) = 0 ⇔ x = y
- METRIC_SAME
-
⊢ ∀m x. dist m (x,x) = 0
- METRIC_POS
-
⊢ ∀m x y. 0 ≤ dist m (x,y)
- METRIC_SYM
-
⊢ ∀m x y. dist m (x,y) = dist m (y,x)
- METRIC_TRIANGLE
-
⊢ ∀m x y z. dist m (x,z) ≤ dist m (x,y) + dist m (y,z)
- METRIC_NZ
-
⊢ ∀m x y. x ≠ y ⇒ 0 < dist m (x,y)
- mtop_istopology
-
⊢ ∀m. istopology (λS'. ∀x. S' x ⇒ ∃e. 0 < e ∧ ∀y. dist m (x,y) < e ⇒ S' y)
- MTOP_OPEN
-
⊢ ∀S' m. open (mtop m) S' ⇔ ∀x. S' x ⇒ ∃e. 0 < e ∧ ∀y. dist m (x,y) < e ⇒ S' y
- BALL_OPEN
-
⊢ ∀m x e. 0 < e ⇒ open (mtop m) (topology$B m (x,e))
- BALL_NEIGH
-
⊢ ∀m x e. 0 < e ⇒ neigh (mtop m) (topology$B m (x,e),x)
- MTOP_LIMPT
-
⊢ ∀m x S'.
limpt (mtop m) x S' ⇔ ∀e. 0 < e ⇒ ∃y. x ≠ y ∧ S' y ∧ dist m (x,y) < e
- ISMET_R1
-
⊢ ismet (λ(x,y). abs (y − x))
- MR1_DEF
-
⊢ ∀x y. dist mr1 (x,y) = abs (y − x)
- MR1_ADD
-
⊢ ∀x d. dist mr1 (x,x + d) = abs d
- MR1_SUB
-
⊢ ∀x d. dist mr1 (x,x − d) = abs d
- MR1_ADD_POS
-
⊢ ∀x d. 0 ≤ d ⇒ dist mr1 (x,x + d) = d
- MR1_SUB_LE
-
⊢ ∀x d. 0 ≤ d ⇒ dist mr1 (x,x − d) = d
- MR1_ADD_LT
-
⊢ ∀x d. 0 < d ⇒ dist mr1 (x,x + d) = d
- MR1_SUB_LT
-
⊢ ∀x d. 0 < d ⇒ dist mr1 (x,x − d) = d
- MR1_BETWEEN1
-
⊢ ∀x y z. x < z ∧ dist mr1 (x,y) < z − x ⇒ y < z
- MR1_LIMPT
-
⊢ ∀x. limpt (mtop mr1) x 𝕌(:real)