Theory "transc"

Parents     powser

Signature

Constant Type
Dint :complex -> (real -> real) -> real -> bool
acs :real -> real
asn :real -> real
atn :real -> real
cos :real -> real
division :complex -> (num -> real) -> bool
dsize :(num -> real) -> num
exp :real -> real
fine :(real -> real) -> (num -> real) set_relation$reln
gauge :(real -> bool) -> (real -> real) -> bool
ln :real -> real
pi :real
root :num -> real -> real
rpow :real -> real -> real
rsum :(num -> real) # (num -> real) -> (real -> real) -> real
sin :real -> real
sqrt :real -> real
tan :real -> real
tdiv :complex -> (num -> real) set_relation$reln

Definitions

atn
⊢ ∀y. atn y = @x. -(pi / 2) < x ∧ x < pi / 2 ∧ tan x = y
acs
⊢ ∀y. acs y = @x. 0 ≤ x ∧ x ≤ pi ∧ cos x = y
asn
⊢ ∀y. asn y = @x. -(pi / 2) ≤ x ∧ x ≤ pi / 2 ∧ sin x = y
tan
⊢ ∀x. tan x = sin x / cos x
pi
⊢ pi = 2 * @x. 0 ≤ x ∧ x ≤ 2 ∧ cos x = 0
sqrt
⊢ ∀x. sqrt x = root 2 x
root
⊢ ∀n x. root n x = @u. (0 < x ⇒ 0 < u) ∧ u pow n = x
exp
⊢ ∀x. exp x = suminf (λn. (λn. (&FACT n)⁻¹) n * x pow n)
cos
⊢ ∀x.
      cos x =
      suminf
        (λn.
             (λn. if EVEN n then -1 pow (n DIV 2) / &FACT n else 0) n *
             x pow n)
sin
⊢ ∀x.
      sin x =
      suminf
        (λn.
             (λn. if EVEN n then 0 else -1 pow ((n − 1) DIV 2) / &FACT n) n *
             x pow n)
ln
⊢ ∀x. ln x = @u. exp u = x
division
⊢ ∀a b D.
      division (a,b) D ⇔
      D 0 = a ∧ ∃N. (∀n. n < N ⇒ D n < D (SUC n)) ∧ ∀n. n ≥ N ⇒ D n = b
dsize
⊢ ∀D. dsize D = @N. (∀n. n < N ⇒ D n < D (SUC n)) ∧ ∀n. n ≥ N ⇒ D n = D N
tdiv
⊢ ∀a b D p.
      tdiv (a,b) (D,p) ⇔ division (a,b) D ∧ ∀n. D n ≤ p n ∧ p n ≤ D (SUC n)
gauge
⊢ ∀E g. gauge E g ⇔ ∀x. E x ⇒ 0 < g x
fine
⊢ ∀g D p. fine g (D,p) ⇔ ∀n. n < dsize D ⇒ D (SUC n) − D n < g (p n)
rsum
⊢ ∀D p f. rsum (D,p) f = sum (0,dsize D) (λn. f (p n) * (D (SUC n) − D n))
Dint
⊢ ∀a b f k.
      Dint (a,b) f k ⇔
      ∀e.
          0 < e ⇒
          ∃g.
              gauge (λx. a ≤ x ∧ x ≤ b) g ∧
              ∀D p.
                  tdiv (a,b) (D,p) ∧ fine g (D,p) ⇒ abs (rsum (D,p) f − k) < e
rpow_def
⊢ ∀a b. a rpow b = exp (b * ln a)


Theorems

SIN_COS_SQRT
⊢ ∀x. 0 ≤ sin x ⇒ sin x = sqrt (1 − cos x pow 2)
COS_SIN_SQRT
⊢ ∀x. 0 ≤ cos x ⇒ cos x = sqrt (1 − sin x pow 2)
SIN_ACS_NZ
⊢ ∀x. -1 < x ∧ x < 1 ⇒ sin (acs x) ≠ 0
COS_ASN_NZ
⊢ ∀x. -1 < x ∧ x < 1 ⇒ cos (asn x) ≠ 0
COS_ATN_NZ
⊢ ∀x. cos (atn x) ≠ 0
COS_SIN_SQ
⊢ ∀x. -(pi / 2) ≤ x ∧ x ≤ pi / 2 ⇒ cos x = sqrt (1 − sin x pow 2)
SIN_COS_SQ
⊢ ∀x. 0 ≤ x ∧ x ≤ pi ⇒ sin x = sqrt (1 − cos x pow 2)
TAN_SEC
⊢ ∀x. cos x ≠ 0 ⇒ 1 + tan x pow 2 = (cos x)⁻¹ pow 2
TAN_ATN
⊢ ∀x. -(pi / 2) < x ∧ x < pi / 2 ⇒ atn (tan x) = x
ATN_BOUNDS
⊢ ∀y. -(pi / 2) < atn y ∧ atn y < pi / 2
ATN_TAN
⊢ ∀y. tan (atn y) = y
ATN
⊢ ∀y. -(pi / 2) < atn y ∧ atn y < pi / 2 ∧ tan (atn y) = y
COS_ACS
⊢ ∀x. 0 ≤ x ∧ x ≤ pi ⇒ acs (cos x) = x
ACS_BOUNDS_LT
⊢ ∀y. -1 < y ∧ y < 1 ⇒ 0 < acs y ∧ acs y < pi
ACS_BOUNDS
⊢ ∀y. -1 ≤ y ∧ y ≤ 1 ⇒ 0 ≤ acs y ∧ acs y ≤ pi
ACS_COS
⊢ ∀y. -1 ≤ y ∧ y ≤ 1 ⇒ cos (acs y) = y
ACS
⊢ ∀y. -1 ≤ y ∧ y ≤ 1 ⇒ 0 ≤ acs y ∧ acs y ≤ pi ∧ cos (acs y) = y
SIN_ASN
⊢ ∀x. -(pi / 2) ≤ x ∧ x ≤ pi / 2 ⇒ asn (sin x) = x
ASN_BOUNDS_LT
⊢ ∀y. -1 < y ∧ y < 1 ⇒ -(pi / 2) < asn y ∧ asn y < pi / 2
ASN_BOUNDS
⊢ ∀y. -1 ≤ y ∧ y ≤ 1 ⇒ -(pi / 2) ≤ asn y ∧ asn y ≤ pi / 2
ASN_SIN
⊢ ∀y. -1 ≤ y ∧ y ≤ 1 ⇒ sin (asn y) = y
ASN
⊢ ∀y. -1 ≤ y ∧ y ≤ 1 ⇒ -(pi / 2) ≤ asn y ∧ asn y ≤ pi / 2 ∧ sin (asn y) = y
TAN_TOTAL
⊢ ∀y. ∃!x. -(pi / 2) < x ∧ x < pi / 2 ∧ tan x = y
TAN_TOTAL_POS
⊢ ∀y. 0 ≤ y ⇒ ∃x. 0 ≤ x ∧ x < pi / 2 ∧ tan x = y
TAN_TOTAL_LEMMA
⊢ ∀y. 0 < y ⇒ ∃x. 0 < x ∧ x < pi / 2 ∧ y < tan x
DIFF_TAN
⊢ ∀x. cos x ≠ 0 ⇒ (tan diffl (cos x pow 2)⁻¹) x
TAN_POS_PI2
⊢ ∀x. 0 < x ∧ x < pi / 2 ⇒ 0 < tan x
TAN_DOUBLE
⊢ ∀x.
      cos x ≠ 0 ∧ cos (2 * x) ≠ 0 ⇒
      tan (2 * x) = 2 * tan x / (1 − tan x pow 2)
TAN_ADD
⊢ ∀x y.
      cos x ≠ 0 ∧ cos y ≠ 0 ∧ cos (x + y) ≠ 0 ⇒
      tan (x + y) = (tan x + tan y) / (1 − tan x * tan y)
TAN_PERIODIC
⊢ ∀x. tan (x + 2 * pi) = tan x
TAN_NEG
⊢ ∀x. tan (-x) = -tan x
TAN_NPI
⊢ ∀n. tan (&n * pi) = 0
TAN_PI
⊢ tan pi = 0
TAN_0
⊢ tan 0 = 0
SIN_ZERO
⊢ ∀x.
      sin x = 0 ⇔
      (∃n. EVEN n ∧ x = &n * (pi / 2)) ∨ ∃n. EVEN n ∧ x = -(&n * (pi / 2))
COS_ZERO
⊢ ∀x.
      cos x = 0 ⇔
      (∃n. ¬EVEN n ∧ x = &n * (pi / 2)) ∨ ∃n. ¬EVEN n ∧ x = -(&n * (pi / 2))
SIN_ZERO_LEMMA
⊢ ∀x. 0 ≤ x ∧ sin x = 0 ⇒ ∃n. EVEN n ∧ x = &n * (pi / 2)
COS_ZERO_LEMMA
⊢ ∀x. 0 ≤ x ∧ cos x = 0 ⇒ ∃n. ¬EVEN n ∧ x = &n * (pi / 2)
SIN_TOTAL
⊢ ∀y. -1 ≤ y ∧ y ≤ 1 ⇒ ∃!x. -(pi / 2) ≤ x ∧ x ≤ pi / 2 ∧ sin x = y
COS_TOTAL
⊢ ∀y. -1 ≤ y ∧ y ≤ 1 ⇒ ∃!x. 0 ≤ x ∧ x ≤ pi ∧ cos x = y
SIN_POS_PI_LE
⊢ ∀x. 0 ≤ x ∧ x ≤ pi ⇒ 0 ≤ sin x
SIN_POS_PI2_LE
⊢ ∀x. 0 ≤ x ∧ x ≤ pi / 2 ⇒ 0 ≤ sin x
COS_POS_PI_LE
⊢ ∀x. -(pi / 2) ≤ x ∧ x ≤ pi / 2 ⇒ 0 ≤ cos x
COS_POS_PI2_LE
⊢ ∀x. 0 ≤ x ∧ x ≤ pi / 2 ⇒ 0 ≤ cos x
SIN_POS_PI
⊢ ∀x. 0 < x ∧ x < pi ⇒ 0 < sin x
COS_POS_PI
⊢ ∀x. -(pi / 2) < x ∧ x < pi / 2 ⇒ 0 < cos x
COS_POS_PI2
⊢ ∀x. 0 < x ∧ x < pi / 2 ⇒ 0 < cos x
SIN_POS_PI2
⊢ ∀x. 0 < x ∧ x < pi / 2 ⇒ 0 < sin x
SIN_NPI
⊢ ∀n. sin (&n * pi) = 0
COS_NPI
⊢ ∀n. cos (&n * pi) = -1 pow n
COS_PERIODIC
⊢ ∀x. cos (x + 2 * pi) = cos x
SIN_PERIODIC
⊢ ∀x. sin (x + 2 * pi) = sin x
COS_PERIODIC_PI
⊢ ∀x. cos (x + pi) = -cos x
SIN_PERIODIC_PI
⊢ ∀x. sin (x + pi) = -sin x
COS_SIN
⊢ ∀x. cos x = sin (pi / 2 − x)
SIN_COS
⊢ ∀x. sin x = cos (pi / 2 − x)
SIN_PI
⊢ sin pi = 0
COS_PI
⊢ cos pi = -1
SIN_PI2
⊢ sin (pi / 2) = 1
PI_POS
⊢ 0 < pi
PI2_BOUNDS
⊢ 0 < pi / 2 ∧ pi / 2 < 2
COS_PI2
⊢ cos (pi / 2) = 0
PI2
⊢ pi / 2 = @x. 0 ≤ x ∧ x ≤ 2 ∧ cos x = 0
COS_ISZERO
⊢ ∃!x. 0 ≤ x ∧ x ≤ 2 ∧ cos x = 0
COS_2
⊢ cos 2 < 0
COS_PAIRED
⊢ ∀x. (λn. -1 pow n / &FACT (2 * n) * x pow (2 * n)) sums cos x
SIN_POS
⊢ ∀x. 0 < x ∧ x < 2 ⇒ 0 < sin x
SIN_PAIRED
⊢ ∀x. (λn. -1 pow n / &FACT (2 * n + 1) * x pow (2 * n + 1)) sums sin x
COS_DOUBLE
⊢ ∀x. cos (2 * x) = cos x pow 2 − sin x pow 2
SIN_DOUBLE
⊢ ∀x. sin (2 * x) = 2 * (sin x * cos x)
COS_NEG
⊢ ∀x. cos (-x) = cos x
SIN_NEG
⊢ ∀x. sin (-x) = -sin x
COS_ADD
⊢ ∀x y. cos (x + y) = cos x * cos y − sin x * sin y
SIN_ADD
⊢ ∀x y. sin (x + y) = sin x * cos y + cos x * sin y
SIN_COS_NEG
⊢ ∀x. (sin (-x) + sin x) pow 2 + (cos (-x) − cos x) pow 2 = 0
SIN_COS_ADD
⊢ ∀x y.
      (sin (x + y) − (sin x * cos y + cos x * sin y)) pow 2 +
      (cos (x + y) − (cos x * cos y − sin x * sin y)) pow 2 = 0
COS_BOUNDS
⊢ ∀x. -1 ≤ cos x ∧ cos x ≤ 1
COS_BOUND
⊢ ∀x. abs (cos x) ≤ 1
SIN_BOUNDS
⊢ ∀x. -1 ≤ sin x ∧ sin x ≤ 1
SIN_BOUND
⊢ ∀x. abs (sin x) ≤ 1
SIN_CIRCLE
⊢ ∀x. sin x pow 2 + cos x pow 2 = 1
COS_0
⊢ cos 0 = 1
SIN_0
⊢ sin 0 = 0
SQRT_EQ
⊢ ∀x y. x pow 2 = y ∧ 0 ≤ x ⇒ x = sqrt y
REAL_DIV_SQRT
⊢ ∀x. 0 ≤ x ⇒ x / sqrt x = sqrt x
SQRT_EVEN_POW2
⊢ ∀n. EVEN n ⇒ sqrt (2 pow n) = 2 pow (n DIV 2)
SQRT_MONO_LE
⊢ ∀x y. 0 ≤ x ∧ x ≤ y ⇒ sqrt x ≤ sqrt y
SQRT_DIV
⊢ ∀x y. 0 ≤ x ∧ 0 ≤ y ⇒ sqrt (x / y) = sqrt x / sqrt y
SQRT_INV
⊢ ∀x. 0 ≤ x ⇒ sqrt x⁻¹ = (sqrt x)⁻¹
SQRT_MUL
⊢ ∀x y. 0 ≤ x ∧ 0 ≤ y ⇒ sqrt (x * y) = sqrt x * sqrt y
SQRT_POS_UNIQ
⊢ ∀x y. 0 ≤ x ∧ 0 ≤ y ∧ y pow 2 = x ⇒ sqrt x = y
POW_2_SQRT
⊢ 0 ≤ x ⇒ sqrt (x pow 2) = x
SQRT_POW_2
⊢ ∀x. 0 ≤ x ⇒ sqrt x pow 2 = x
SQRT_POW2
⊢ ∀x. sqrt x pow 2 = x ⇔ 0 ≤ x
SQRT_POS_LE
⊢ ∀x. 0 ≤ x ⇒ 0 ≤ sqrt x
SQRT_POS_LT
⊢ ∀x. 0 < x ⇒ 0 < sqrt x
SQRT_1
⊢ sqrt 1 = 1
SQRT_0
⊢ sqrt 0 = 0
ROOT_MONO_LE
⊢ ∀x y. 0 ≤ x ∧ x ≤ y ⇒ root (SUC n) x ≤ root (SUC n) y
ROOT_DIV
⊢ ∀n x y.
      0 ≤ x ∧ 0 ≤ y ⇒ root (SUC n) (x / y) = root (SUC n) x / root (SUC n) y
ROOT_INV
⊢ ∀n x. 0 ≤ x ⇒ root (SUC n) x⁻¹ = (root (SUC n) x)⁻¹
ROOT_MUL
⊢ ∀n x y.
      0 ≤ x ∧ 0 ≤ y ⇒ root (SUC n) (x * y) = root (SUC n) x * root (SUC n) y
ROOT_POS_UNIQ
⊢ ∀n x y. 0 ≤ x ∧ 0 ≤ y ∧ y pow SUC n = x ⇒ root (SUC n) x = y
ROOT_POS
⊢ ∀n x. 0 ≤ x ⇒ 0 ≤ root (SUC n) x
POW_ROOT_POS
⊢ ∀n x. 0 ≤ x ⇒ root (SUC n) (x pow SUC n) = x
ROOT_POW_POS
⊢ ∀n x. 0 ≤ x ⇒ root (SUC n) x pow SUC n = x
ROOT_POS_LT
⊢ ∀n x. 0 < x ⇒ 0 < root (SUC n) x
ROOT_1
⊢ ∀n. root (SUC n) 1 = 1
ROOT_0
⊢ ∀n. root (SUC n) 0 = 0
ROOT_LN
⊢ ∀n x. 0 < x ⇒ root (SUC n) x = exp (ln x / &SUC n)
ROOT_LT_LEMMA
⊢ ∀n x. 0 < x ⇒ exp (ln x / &SUC n) pow SUC n = x
EXP_CONVERGES
⊢ ∀x. (λn. (λn. (&FACT n)⁻¹) n * x pow n) sums exp x
SIN_CONVERGES
⊢ ∀x.
      (λn.
           (λn. if EVEN n then 0 else -1 pow ((n − 1) DIV 2) / &FACT n) n *
           x pow n) sums sin x
COS_CONVERGES
⊢ ∀x.
      (λn. (λn. if EVEN n then -1 pow (n DIV 2) / &FACT n else 0) n * x pow n) sums
      cos x
EXP_FDIFF
⊢ diffs (λn. (&FACT n)⁻¹) = (λn. (&FACT n)⁻¹)
SIN_FDIFF
⊢ diffs (λn. if EVEN n then 0 else -1 pow ((n − 1) DIV 2) / &FACT n) =
  (λn. if EVEN n then -1 pow (n DIV 2) / &FACT n else 0)
COS_FDIFF
⊢ diffs (λn. if EVEN n then -1 pow (n DIV 2) / &FACT n else 0) =
  (λn. -(λn. if EVEN n then 0 else -1 pow ((n − 1) DIV 2) / &FACT n) n)
SIN_NEGLEMMA
⊢ ∀x.
      -sin x =
      suminf
        (λn.
             -((λn. if EVEN n then 0 else -1 pow ((n − 1) DIV 2) / &FACT n) n *
              x pow n))
DIFF_EXP
⊢ ∀x. (exp diffl exp x) x
DIFF_SIN
⊢ ∀x. (sin diffl cos x) x
DIFF_COS
⊢ ∀x. (cos diffl -sin x) x
DIFF_COMPOSITE
⊢ ((f diffl l) x ∧ f x ≠ 0 ⇒ ((λx. (f x)⁻¹) diffl -(l / f x pow 2)) x) ∧
  ((f diffl l) x ∧ (g diffl m) x ∧ g x ≠ 0 ⇒
   ((λx. f x / g x) diffl ((l * g x − m * f x) / g x pow 2)) x) ∧
  ((f diffl l) x ∧ (g diffl m) x ⇒ ((λx. f x + g x) diffl (l + m)) x) ∧
  ((f diffl l) x ∧ (g diffl m) x ⇒
   ((λx. f x * g x) diffl (l * g x + m * f x)) x) ∧
  ((f diffl l) x ∧ (g diffl m) x ⇒ ((λx. f x − g x) diffl (l − m)) x) ∧
  ((f diffl l) x ⇒ ((λx. -f x) diffl -l) x) ∧
  ((g diffl m) x ⇒ ((λx. g x pow n) diffl (&n * g x pow (n − 1) * m)) x) ∧
  ((g diffl m) x ⇒ ((λx. exp (g x)) diffl (exp (g x) * m)) x) ∧
  ((g diffl m) x ⇒ ((λx. sin (g x)) diffl (cos (g x) * m)) x) ∧
  ((g diffl m) x ⇒ ((λx. cos (g x)) diffl (-sin (g x) * m)) x)
EXP_0
⊢ exp 0 = 1
EXP_LE_X
⊢ ∀x. 0 ≤ x ⇒ 1 + x ≤ exp x
EXP_LT_1
⊢ ∀x. 0 < x ⇒ 1 < exp x
EXP_ADD_MUL
⊢ ∀x y. exp (x + y) * exp (-x) = exp y
EXP_NEG_MUL
⊢ ∀x. exp x * exp (-x) = 1
EXP_NEG_MUL2
⊢ ∀x. exp (-x) * exp x = 1
EXP_NEG
⊢ ∀x. exp (-x) = (exp x)⁻¹
EXP_ADD
⊢ ∀x y. exp (x + y) = exp x * exp y
EXP_POS_LE
⊢ ∀x. 0 ≤ exp x
EXP_NZ
⊢ ∀x. exp x ≠ 0
EXP_POS_LT
⊢ ∀x. 0 < exp x
EXP_N
⊢ ∀n x. exp (&n * x) = exp x pow n
EXP_SUB
⊢ ∀x y. exp (x − y) = exp x / exp y
EXP_MONO_IMP
⊢ ∀x y. x < y ⇒ exp x < exp y
EXP_MONO_LT
⊢ ∀x y. exp x < exp y ⇔ x < y
EXP_MONO_LE
⊢ ∀x y. exp x ≤ exp y ⇔ x ≤ y
EXP_INJ
⊢ ∀x y. exp x = exp y ⇔ x = y
EXP_TOTAL_LEMMA
⊢ ∀y. 1 ≤ y ⇒ ∃x. 0 ≤ x ∧ x ≤ y − 1 ∧ exp x = y
EXP_TOTAL
⊢ ∀y. 0 < y ⇒ ∃x. exp x = y
LN_EXP
⊢ ∀x. ln (exp x) = x
EXP_LN
⊢ ∀x. exp (ln x) = x ⇔ 0 < x
LN_MUL
⊢ ∀x y. 0 < x ∧ 0 < y ⇒ ln (x * y) = ln x + ln y
LN_INJ
⊢ ∀x y. 0 < x ∧ 0 < y ⇒ (ln x = ln y ⇔ x = y)
LN_1
⊢ ln 1 = 0
LN_INV
⊢ ∀x. 0 < x ⇒ ln x⁻¹ = -ln x
LN_DIV
⊢ ∀x y. 0 < x ∧ 0 < y ⇒ ln (x / y) = ln x − ln y
LN_MONO_LT
⊢ ∀x y. 0 < x ∧ 0 < y ⇒ (ln x < ln y ⇔ x < y)
LN_MONO_LE
⊢ ∀x y. 0 < x ∧ 0 < y ⇒ (ln x ≤ ln y ⇔ x ≤ y)
LN_POW
⊢ ∀n x. 0 < x ⇒ ln (x pow n) = &n * ln x
LN_LE
⊢ ∀x. 0 ≤ x ⇒ ln (1 + x) ≤ x
LN_LT_X
⊢ ∀x. 0 < x ⇒ ln x < x
LN_POS
⊢ ∀x. 1 ≤ x ⇒ 0 ≤ ln x
DIFF_LN
⊢ ∀x. 0 < x ⇒ (ln diffl x⁻¹) x
DIFF_ASN_LEMMA
⊢ ∀x. -1 < x ∧ x < 1 ⇒ (asn diffl (cos (asn x))⁻¹) x
DIFF_ASN
⊢ ∀x. -1 < x ∧ x < 1 ⇒ (asn diffl (sqrt (1 − x pow 2))⁻¹) x
DIFF_ACS_LEMMA
⊢ ∀x. -1 < x ∧ x < 1 ⇒ (acs diffl (-sin (acs x))⁻¹) x
DIFF_ACS
⊢ ∀x. -1 < x ∧ x < 1 ⇒ (acs diffl -(sqrt (1 − x pow 2))⁻¹) x
DIFF_ATN
⊢ ∀x. (atn diffl (1 + x pow 2)⁻¹) x
DIVISION_0
⊢ ∀a b. a = b ⇒ dsize (λn. if n = 0 then a else b) = 0
DIVISION_1
⊢ ∀a b. a < b ⇒ dsize (λn. if n = 0 then a else b) = 1
DIVISION_SINGLE
⊢ ∀a b. a ≤ b ⇒ division (a,b) (λn. if n = 0 then a else b)
DIVISION_LHS
⊢ ∀D a b. division (a,b) D ⇒ D 0 = a
DIVISION_THM
⊢ ∀D a b.
      division (a,b) D ⇔
      D 0 = a ∧ (∀n. n < dsize D ⇒ D n < D (SUC n)) ∧
      ∀n. n ≥ dsize D ⇒ D n = b
DIVISION_RHS
⊢ ∀D a b. division (a,b) D ⇒ D (dsize D) = b
DIVISION_LT_GEN
⊢ ∀D a b m n. division (a,b) D ∧ m < n ∧ n ≤ dsize D ⇒ D m < D n
DIVISION_LT
⊢ ∀D a b. division (a,b) D ⇒ ∀n. n < dsize D ⇒ D 0 < D (SUC n)
DIVISION_LE
⊢ ∀D a b. division (a,b) D ⇒ a ≤ b
DIVISION_GT
⊢ ∀D a b. division (a,b) D ⇒ ∀n. n < dsize D ⇒ D n < D (dsize D)
DIVISION_EQ
⊢ ∀D a b. division (a,b) D ⇒ (a = b ⇔ dsize D = 0)
DIVISION_LBOUND
⊢ ∀D a b. division (a,b) D ⇒ ∀r. a ≤ D r
DIVISION_LBOUND_LT
⊢ ∀D a b. division (a,b) D ∧ dsize D ≠ 0 ⇒ ∀n. a < D (SUC n)
DIVISION_UBOUND
⊢ ∀D a b. division (a,b) D ⇒ ∀r. D r ≤ b
DIVISION_UBOUND_LT
⊢ ∀D a b n. division (a,b) D ∧ n < dsize D ⇒ D n < b
DIVISION_APPEND
⊢ ∀a b c.
      (∃D1 p1. tdiv (a,b) (D1,p1) ∧ fine g (D1,p1)) ∧
      (∃D2 p2. tdiv (b,c) (D2,p2) ∧ fine g (D2,p2)) ⇒
      ∃D p. tdiv (a,c) (D,p) ∧ fine g (D,p)
DIVISION_EXISTS
⊢ ∀a b g.
      a ≤ b ∧ gauge (λx. a ≤ x ∧ x ≤ b) g ⇒
      ∃D p. tdiv (a,b) (D,p) ∧ fine g (D,p)
GAUGE_MIN
⊢ ∀E g1 g2.
      gauge E g1 ∧ gauge E g2 ⇒
      gauge E (λx. if g1 x < g2 x then g1 x else g2 x)
FINE_MIN
⊢ ∀g1 g2 D p.
      fine (λx. if g1 x < g2 x then g1 x else g2 x) (D,p) ⇒
      fine g1 (D,p) ∧ fine g2 (D,p)
DINT_UNIQ
⊢ ∀a b f k1 k2. a ≤ b ∧ Dint (a,b) f k1 ∧ Dint (a,b) f k2 ⇒ k1 = k2
INTEGRAL_NULL
⊢ ∀f a. Dint (a,a) f 0
FTC1
⊢ ∀f f' a b.
      a ≤ b ∧ (∀x. a ≤ x ∧ x ≤ b ⇒ (f diffl f' x) x) ⇒
      Dint (a,b) f' (f b − f a)
MCLAURIN
⊢ ∀f diff h n.
      0 < h ∧ 0 < n ∧ diff 0 = f ∧
      (∀m t. m < n ∧ 0 ≤ t ∧ t ≤ h ⇒ (diff m diffl diff (SUC m) t) t) ⇒
      ∃t.
          0 < t ∧ t < h ∧
          f h =
          sum (0,n) (λm. diff m 0 / &FACT m * h pow m) +
          diff n t / &FACT n * h pow n
MCLAURIN_NEG
⊢ ∀f diff h n.
      h < 0 ∧ 0 < n ∧ diff 0 = f ∧
      (∀m t. m < n ∧ h ≤ t ∧ t ≤ 0 ⇒ (diff m diffl diff (SUC m) t) t) ⇒
      ∃t.
          h < t ∧ t < 0 ∧
          f h =
          sum (0,n) (λm. diff m 0 / &FACT m * h pow m) +
          diff n t / &FACT n * h pow n
MCLAURIN_ALL_LT
⊢ ∀f diff.
      diff 0 = f ∧ (∀m x. (diff m diffl diff (SUC m) x) x) ⇒
      ∀x n.
          x ≠ 0 ∧ 0 < n ⇒
          ∃t.
              0 < abs t ∧ abs t < abs x ∧
              f x =
              sum (0,n) (λm. diff m 0 / &FACT m * x pow m) +
              diff n t / &FACT n * x pow n
MCLAURIN_ZERO
⊢ ∀diff n x.
      x = 0 ∧ 0 < n ⇒ sum (0,n) (λm. diff m 0 / &FACT m * x pow m) = diff 0 0
MCLAURIN_ALL_LE
⊢ ∀f diff.
      diff 0 = f ∧ (∀m x. (diff m diffl diff (SUC m) x) x) ⇒
      ∀x n.
          ∃t.
              abs t ≤ abs x ∧
              f x =
              sum (0,n) (λm. diff m 0 / &FACT m * x pow m) +
              diff n t / &FACT n * x pow n
MCLAURIN_EXP_LT
⊢ ∀x n.
      x ≠ 0 ∧ 0 < n ⇒
      ∃t.
          0 < abs t ∧ abs t < abs x ∧
          exp x =
          sum (0,n) (λm. x pow m / &FACT m) + exp t / &FACT n * x pow n
MCLAURIN_EXP_LE
⊢ ∀x n.
      ∃t.
          abs t ≤ abs x ∧
          exp x =
          sum (0,n) (λm. x pow m / &FACT m) + exp t / &FACT n * x pow n
DIFF_LN_COMPOSITE
⊢ ∀g m x. (g diffl m) x ∧ 0 < g x ⇒ ((λx. ln (g x)) diffl ((g x)⁻¹ * m)) x
GEN_RPOW
⊢ ∀a n. 0 < a ⇒ a pow n = a rpow &n
RPOW_SUC_N
⊢ ∀a n. 0 < a ⇒ a rpow (&n + 1) = a pow SUC n
RPOW_0
⊢ ∀a. 0 < a ⇒ a rpow 0 = 1
RPOW_1
⊢ ∀a. 0 < a ⇒ a rpow 1 = a
ONE_RPOW
⊢ ∀a. 0 < a ⇒ 1 rpow a = 1
RPOW_POS_LT
⊢ ∀a b. 0 < a ⇒ 0 < a rpow b
RPOW_NZ
⊢ ∀a b. 0 ≠ a ⇒ a rpow b ≠ 0
LN_RPOW
⊢ ∀a b. 0 < a ⇒ ln (a rpow b) = b * ln a
RPOW_ADD
⊢ ∀a b c. a rpow (b + c) = a rpow b * a rpow c
RPOW_ADD_MUL
⊢ ∀a b c. a rpow (b + c) * a rpow -b = a rpow c
RPOW_SUB
⊢ ∀a b c. a rpow (b − c) = a rpow b / a rpow c
RPOW_DIV
⊢ ∀a b c. 0 < a ∧ 0 < b ⇒ (a / b) rpow c = a rpow c / b rpow c
RPOW_INV
⊢ ∀a b. 0 < a ⇒ a⁻¹ rpow b = (a rpow b)⁻¹
RPOW_MUL
⊢ ∀a b c. 0 < a ∧ 0 < b ⇒ (a * b) rpow c = a rpow c * b rpow c
RPOW_RPOW
⊢ ∀a b c. 0 < a ⇒ (a rpow b) rpow c = a rpow (b * c)
RPOW_LT
⊢ ∀a b c. 1 < a ⇒ (a rpow b < a rpow c ⇔ b < c)
RPOW_LE
⊢ ∀a b c. 1 < a ⇒ (a rpow b ≤ a rpow c ⇔ b ≤ c)
BASE_RPOW_LE
⊢ ∀a b c. 0 < a ∧ 0 < c ∧ 0 < b ⇒ (a rpow b ≤ c rpow b ⇔ a ≤ c)
BASE_RPOW_LT
⊢ ∀a b c. 0 < a ∧ 0 < c ∧ 0 < b ⇒ (a rpow b < c rpow b ⇔ a < c)
RPOW_UNIQ_BASE
⊢ ∀a b c. 0 < a ∧ 0 < c ∧ 0 ≠ b ∧ a rpow b = c rpow b ⇒ a = c
RPOW_UNIQ_EXP
⊢ ∀a b c. 1 < a ∧ 0 < c ∧ 0 < b ∧ a rpow b = a rpow c ⇒ b = c
RPOW_DIV_BASE
⊢ ∀x t. 0 < x ⇒ x rpow t / x = x rpow (t − 1)
DIFF_COMPOSITE_EXP
⊢ ∀g m x. (g diffl m) x ⇒ ((λx. exp (g x)) diffl (exp (g x) * m)) x
DIFF_RPOW
⊢ ∀x y. 0 < x ⇒ ((λx. x rpow y) diffl (y * x rpow (y − 1))) x