Theory "ucord"

Parents     ordinal

Signature

Constant Type
omega1 :α ucord

Definitions

omega1_def
⊢ ω₁ = sup {a | countableOrd a}


Theorems

ucinf_uncountable
⊢ ¬countable 𝕌(:α ucinf)
Unum_cardlt_ucinf
⊢ 𝕌(:num) <

Unum_cardle_ucinf
⊢ 𝕌(:num) ≼ 𝕌(:α ucinf)
ucord_sup_exists_lemma
⊢ {a | countableOrd a} ≼ 𝕌(:α ucinf)
x_lt_omega1_countable
⊢ x < ω₁ ⇔ countableOrd x
omega1_not_countable
⊢ ¬countableOrd ω₁