Theory "util_prob"

Parents     real_sigma

Signature

Constant Type
lg :real -> real
logr :real -> real -> real
minimal :(num -> bool) -> num
pair :(α -> bool) -> (β -> bool) -> α # β -> bool
powr :real -> real -> real
prod_sets :((α -> bool) -> bool) -> ((β -> bool) -> bool) -> (α # β -> bool) -> bool

Definitions

pair_def
⊢ ∀X Y. pair X Y = (λ(x,y). x ∈ X ∧ y ∈ Y)
powr_def
⊢ ∀x a. x powr a = exp (a * ln x)
logr_def
⊢ ∀a x. logr a x = ln x / ln a
lg_def
⊢ ∀x. lg x = logr 2 x
prod_sets_def
⊢ ∀a b. prod_sets a b = {s × t | s ∈ a ∧ t ∈ b}
minimal_def
⊢ ∀p. minimal p = @n. p n ∧ ∀m. m < n ⇒ ¬p m


Theorems

EQ_T_IMP
⊢ ∀x. x ⇔ T ⇒ x
IN_PAIR
⊢ ∀x X Y. x ∈ pair X Y ⇔ FST x ∈ X ∧ SND x ∈ Y
PAIR_UNIV
⊢ pair 𝕌(:α) 𝕌(:β) = 𝕌(:α # β)
PAIRED_BETA_THM
⊢ ∀f z. UNCURRY f z = f (FST z) (SND z)
MAX_LE_X
⊢ ∀m n k. MAX m n ≤ k ⇔ m ≤ k ∧ n ≤ k
X_LE_MAX
⊢ ∀m n k. k ≤ MAX m n ⇔ k ≤ m ∨ k ≤ n
TRANSFORM_2D_NUM
⊢ ∀P. (∀m n. P m n ⇒ P n m) ∧ (∀m n. P m (m + n)) ⇒ ∀m n. P m n
TRIANGLE_2D_NUM
⊢ ∀P. (∀d n. P n (d + n)) ⇒ ∀m n. m ≤ n ⇒ P m n
lg_1
⊢ lg 1 = 0
logr_1
⊢ ∀b. logr b 1 = 0
lg_nonzero
⊢ ∀x. x ≠ 0 ∧ 0 ≤ x ⇒ (lg x ≠ 0 ⇔ x ≠ 1)
lg_mul
⊢ ∀x y. 0 < x ∧ 0 < y ⇒ lg (x * y) = lg x + lg y
logr_mul
⊢ ∀b x y. 0 < x ∧ 0 < y ⇒ logr b (x * y) = logr b x + logr b y
lg_2
⊢ lg 2 = 1
lg_inv
⊢ ∀x. 0 < x ⇒ lg x⁻¹ = -lg x
logr_inv
⊢ ∀b x. 0 < x ⇒ logr b x⁻¹ = -logr b x
logr_div
⊢ ∀b x y. 0 < x ∧ 0 < y ⇒ logr b (x / y) = logr b x − logr b y
neg_lg
⊢ ∀x. 0 < x ⇒ -lg x = lg x⁻¹
neg_logr
⊢ ∀b x. 0 < x ⇒ -logr b x = logr b x⁻¹
lg_pow
⊢ ∀n. lg (2 pow n) = &n
NUM_2D_BIJ
⊢ ∃f. BIJ f (𝕌(:num) × 𝕌(:num)) 𝕌(:num)
NUM_2D_BIJ_INV
⊢ ∃f. BIJ f 𝕌(:num) (𝕌(:num) × 𝕌(:num))
NUM_2D_BIJ_NZ
⊢ ∃f. BIJ f (𝕌(:num) × (𝕌(:num) DIFF {0})) 𝕌(:num)
NUM_2D_BIJ_NZ_INV
⊢ ∃f. BIJ f 𝕌(:num) (𝕌(:num) × (𝕌(:num) DIFF {0}))
NUM_2D_BIJ_NZ_ALT
⊢ ∃f. BIJ f (𝕌(:num) × 𝕌(:num)) (𝕌(:num) DIFF {0})
NUM_2D_BIJ_NZ_ALT_INV
⊢ ∃f. BIJ f (𝕌(:num) DIFF {0}) (𝕌(:num) × 𝕌(:num))
NUM_2D_BIJ_NZ_ALT2
⊢ ∃f. BIJ f ((𝕌(:num) DIFF {0}) × (𝕌(:num) DIFF {0})) 𝕌(:num)
NUM_2D_BIJ_NZ_ALT2_INV
⊢ ∃f. BIJ f 𝕌(:num) ((𝕌(:num) DIFF {0}) × (𝕌(:num) DIFF {0}))
K_PARTIAL
⊢ ∀x. K x = (λz. x)
IN_o
⊢ ∀x f s. x ∈ s ∘ f ⇔ f x ∈ s
IN_PROD_SETS
⊢ ∀s a b. s ∈ prod_sets a b ⇔ ∃t u. s = t × u ∧ t ∈ a ∧ u ∈ b
NUM_2D_BIJ_SMALL_SQUARE
⊢ ∀f k.
      BIJ f 𝕌(:num) (𝕌(:num) × 𝕌(:num)) ⇒
      ∃N. count k × count k ⊆ IMAGE f (count N)
NUM_2D_BIJ_BIG_SQUARE
⊢ ∀f N.
      BIJ f 𝕌(:num) (𝕌(:num) × 𝕌(:num)) ⇒
      ∃k. IMAGE f (count N) ⊆ count k × count k
finite_enumeration_of_sets_has_max_non_empty
⊢ ∀f s.
      FINITE s ∧ (∀x. f x ∈ s) ∧ (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ⇒
      ∃N. ∀n. n ≥ N ⇒ f n = ∅
PREIMAGE_REAL_COMPL1
⊢ ∀c. COMPL {x | c < x} = {x | x ≤ c}
PREIMAGE_REAL_COMPL2
⊢ ∀c. COMPL {x | c ≤ x} = {x | x < c}
PREIMAGE_REAL_COMPL3
⊢ ∀c. COMPL {x | x ≤ c} = {x | c < x}
PREIMAGE_REAL_COMPL4
⊢ ∀c. COMPL {x | x < c} = {x | c ≤ x}
GBIGUNION_IMAGE
⊢ ∀s p n. {s | ∃n. p s n} = BIGUNION (IMAGE (λn. {s | p s n}) 𝕌(:γ))
LT_SUC
⊢ ∀a b. a < SUC b ⇔ a < b ∨ a = b
LE_SUC
⊢ ∀a b. a ≤ SUC b ⇔ a ≤ b ∨ a = SUC b
HALF_POS
⊢ 0 < 1 / 2
HALF_LT_1
⊢ 1 / 2 < 1
HALF_CANCEL
⊢ 2 * (1 / 2) = 1
X_HALF_HALF
⊢ ∀x. 1 / 2 * x + 1 / 2 * x = x
ONE_MINUS_HALF
⊢ 1 − 1 / 2 = 1 / 2
POW_HALF_POS
⊢ ∀n. 0 < (1 / 2) pow n
POW_HALF_SMALL
⊢ ∀e. 0 < e ⇒ ∃n. (1 / 2) pow n < e
POW_HALF_MONO
⊢ ∀m n. m ≤ n ⇒ (1 / 2) pow n ≤ (1 / 2) pow m
REAL_LE_LT_MUL
⊢ ∀x y. 0 ≤ x ∧ 0 < y ⇒ 0 ≤ x * y
REAL_LT_LE_MUL
⊢ ∀x y. 0 < x ∧ 0 ≤ y ⇒ 0 ≤ x * y
REAL_MUL_IDEMPOT
⊢ ∀r. r * r = r ⇔ r = 0 ∨ r = 1
REAL_SUP_LE_X
⊢ ∀P x. (∃r. P r) ∧ (∀r. P r ⇒ r ≤ x) ⇒ sup P ≤ x
REAL_X_LE_SUP
⊢ ∀P x. (∃r. P r) ∧ (∃z. ∀r. P r ⇒ r ≤ z) ∧ (∃r. P r ∧ x ≤ r) ⇒ x ≤ sup P
INF_DEF_ALT
⊢ ∀p. inf p = -sup (λr. -r ∈ p)
LE_INF
⊢ ∀p r. (∃x. x ∈ p) ∧ (∀x. x ∈ p ⇒ r ≤ x) ⇒ r ≤ inf p
INF_LE
⊢ ∀p r. (∃z. ∀x. x ∈ p ⇒ z ≤ x) ∧ (∃x. x ∈ p ∧ x ≤ r) ⇒ inf p ≤ r
INF_GREATER
⊢ ∀p z. (∃x. x ∈ p) ∧ inf p < z ⇒ ∃x. x ∈ p ∧ x < z
INF_CLOSE
⊢ ∀p e. (∃x. x ∈ p) ∧ 0 < e ⇒ ∃x. x ∈ p ∧ x < inf p + e
INCREASING_SEQ
⊢ ∀f l.
      (∀n. f n ≤ f (SUC n)) ∧ (∀n. f n ≤ l) ∧ (∀e. 0 < e ⇒ ∃n. l < f n + e) ⇒
      f --> l
SEQ_SANDWICH
⊢ ∀f g h l. f --> l ∧ h --> l ∧ (∀n. f n ≤ g n ∧ g n ≤ h n) ⇒ g --> l
SER_POS
⊢ ∀f. summable f ∧ (∀n. 0 ≤ f n) ⇒ 0 ≤ suminf f
SER_POS_MONO
⊢ ∀f. (∀n. 0 ≤ f n) ⇒ mono (λn. sum (0,n) f)
POS_SUMMABLE
⊢ ∀f. (∀n. 0 ≤ f n) ∧ (∃x. ∀n. sum (0,n) f ≤ x) ⇒ summable f
SUMMABLE_LE
⊢ ∀f x. summable f ∧ (∀n. sum (0,n) f ≤ x) ⇒ suminf f ≤ x
SUMS_EQ
⊢ ∀f x. f sums x ⇔ summable f ∧ suminf f = x
SUMINF_POS
⊢ ∀f. (∀n. 0 ≤ f n) ∧ summable f ⇒ 0 ≤ suminf f
SUM_PICK
⊢ ∀n k x. sum (0,n) (λm. if m = k then x else 0) = if k < n then x else 0
SUM_LT
⊢ ∀f g m n.
      (∀r. m ≤ r ∧ r < n + m ⇒ f r < g r) ∧ 0 < n ⇒ sum (m,n) f < sum (m,n) g
SUM_CONST_R
⊢ ∀n r. sum (0,n) (K r) = &n * r
SUMS_ZERO
⊢ K 0 sums 0
SUMINF_ADD
⊢ ∀f g.
      summable f ∧ summable g ⇒
      summable (λn. f n + g n) ∧ suminf f + suminf g = suminf (λn. f n + g n)
SUMINF_2D
⊢ ∀f g h.
      (∀m n. 0 ≤ f m n) ∧ (∀n. f n sums g n) ∧ summable g ∧
      BIJ h 𝕌(:num) (𝕌(:num) × 𝕌(:num)) ⇒
      UNCURRY f ∘ h sums suminf g
POW_HALF_SER
⊢ (λn. (1 / 2) pow (n + 1)) sums 1
SER_POS_COMPARE
⊢ ∀f g.
      (∀n. 0 ≤ f n) ∧ summable g ∧ (∀n. f n ≤ g n) ⇒
      summable f ∧ suminf f ≤ suminf g
MINIMAL_EXISTS0
⊢ (∃n. P n) ⇔ ∃n. P n ∧ ∀m. m < n ⇒ ¬P m
MINIMAL_EXISTS
⊢ ∀P. (∃n. P n) ⇔ P (minimal P) ∧ ∀n. n < minimal P ⇒ ¬P n
MINIMAL_EXISTS_IMP
⊢ ∀P. (∃n. P n) ⇒ ∃m. P m ∧ ∀n. n < m ⇒ ¬P n
MINIMAL_EQ_IMP
⊢ ∀m p. p m ∧ (∀n. n < m ⇒ ¬p n) ⇒ m = minimal p
MINIMAL_SUC
⊢ ∀n p.
      SUC n = minimal p ∧ p (SUC n) ⇔ ¬p 0 ∧ n = minimal (p ∘ SUC) ∧ p (SUC n)
MINIMAL_EQ
⊢ ∀p m. p m ∧ m = minimal p ⇔ p m ∧ ∀n. n < m ⇒ ¬p n
MINIMAL_SUC_IMP
⊢ ∀n p. p (SUC n) ∧ ¬p 0 ∧ n = minimal (p ∘ SUC) ⇒ SUC n = minimal p