- EQ_T_IMP
-
⊢ ∀x. x ⇔ T ⇒ x
- IN_PAIR
-
⊢ ∀x X Y. x ∈ pair X Y ⇔ FST x ∈ X ∧ SND x ∈ Y
- PAIR_UNIV
-
⊢ pair 𝕌(:α) 𝕌(:β) = 𝕌(:α # β)
- PAIRED_BETA_THM
-
⊢ ∀f z. UNCURRY f z = f (FST z) (SND z)
- MAX_LE_X
-
⊢ ∀m n k. MAX m n ≤ k ⇔ m ≤ k ∧ n ≤ k
- X_LE_MAX
-
⊢ ∀m n k. k ≤ MAX m n ⇔ k ≤ m ∨ k ≤ n
- TRANSFORM_2D_NUM
-
⊢ ∀P. (∀m n. P m n ⇒ P n m) ∧ (∀m n. P m (m + n)) ⇒ ∀m n. P m n
- TRIANGLE_2D_NUM
-
⊢ ∀P. (∀d n. P n (d + n)) ⇒ ∀m n. m ≤ n ⇒ P m n
- lg_1
-
⊢ lg 1 = 0
- logr_1
-
⊢ ∀b. logr b 1 = 0
- lg_nonzero
-
⊢ ∀x. x ≠ 0 ∧ 0 ≤ x ⇒ (lg x ≠ 0 ⇔ x ≠ 1)
- lg_mul
-
⊢ ∀x y. 0 < x ∧ 0 < y ⇒ lg (x * y) = lg x + lg y
- logr_mul
-
⊢ ∀b x y. 0 < x ∧ 0 < y ⇒ logr b (x * y) = logr b x + logr b y
- lg_2
-
⊢ lg 2 = 1
- lg_inv
-
⊢ ∀x. 0 < x ⇒ lg x⁻¹ = -lg x
- logr_inv
-
⊢ ∀b x. 0 < x ⇒ logr b x⁻¹ = -logr b x
- logr_div
-
⊢ ∀b x y. 0 < x ∧ 0 < y ⇒ logr b (x / y) = logr b x − logr b y
- neg_lg
-
⊢ ∀x. 0 < x ⇒ -lg x = lg x⁻¹
- neg_logr
-
⊢ ∀b x. 0 < x ⇒ -logr b x = logr b x⁻¹
- lg_pow
-
⊢ ∀n. lg (2 pow n) = &n
- NUM_2D_BIJ
-
⊢ ∃f. BIJ f (𝕌(:num) × 𝕌(:num)) 𝕌(:num)
- NUM_2D_BIJ_INV
-
⊢ ∃f. BIJ f 𝕌(:num) (𝕌(:num) × 𝕌(:num))
- NUM_2D_BIJ_NZ
-
⊢ ∃f. BIJ f (𝕌(:num) × (𝕌(:num) DIFF {0})) 𝕌(:num)
- NUM_2D_BIJ_NZ_INV
-
⊢ ∃f. BIJ f 𝕌(:num) (𝕌(:num) × (𝕌(:num) DIFF {0}))
- NUM_2D_BIJ_NZ_ALT
-
⊢ ∃f. BIJ f (𝕌(:num) × 𝕌(:num)) (𝕌(:num) DIFF {0})
- NUM_2D_BIJ_NZ_ALT_INV
-
⊢ ∃f. BIJ f (𝕌(:num) DIFF {0}) (𝕌(:num) × 𝕌(:num))
- NUM_2D_BIJ_NZ_ALT2
-
⊢ ∃f. BIJ f ((𝕌(:num) DIFF {0}) × (𝕌(:num) DIFF {0})) 𝕌(:num)
- NUM_2D_BIJ_NZ_ALT2_INV
-
⊢ ∃f. BIJ f 𝕌(:num) ((𝕌(:num) DIFF {0}) × (𝕌(:num) DIFF {0}))
- K_PARTIAL
-
⊢ ∀x. K x = (λz. x)
- IN_o
-
⊢ ∀x f s. x ∈ s ∘ f ⇔ f x ∈ s
- IN_PROD_SETS
-
⊢ ∀s a b. s ∈ prod_sets a b ⇔ ∃t u. s = t × u ∧ t ∈ a ∧ u ∈ b
- NUM_2D_BIJ_SMALL_SQUARE
-
⊢ ∀f k.
BIJ f 𝕌(:num) (𝕌(:num) × 𝕌(:num)) ⇒
∃N. count k × count k ⊆ IMAGE f (count N)
- NUM_2D_BIJ_BIG_SQUARE
-
⊢ ∀f N.
BIJ f 𝕌(:num) (𝕌(:num) × 𝕌(:num)) ⇒
∃k. IMAGE f (count N) ⊆ count k × count k
- finite_enumeration_of_sets_has_max_non_empty
-
⊢ ∀f s.
FINITE s ∧ (∀x. f x ∈ s) ∧ (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ⇒
∃N. ∀n. n ≥ N ⇒ f n = ∅
- PREIMAGE_REAL_COMPL1
-
⊢ ∀c. COMPL {x | c < x} = {x | x ≤ c}
- PREIMAGE_REAL_COMPL2
-
⊢ ∀c. COMPL {x | c ≤ x} = {x | x < c}
- PREIMAGE_REAL_COMPL3
-
⊢ ∀c. COMPL {x | x ≤ c} = {x | c < x}
- PREIMAGE_REAL_COMPL4
-
⊢ ∀c. COMPL {x | x < c} = {x | c ≤ x}
- GBIGUNION_IMAGE
-
⊢ ∀s p n. {s | ∃n. p s n} = BIGUNION (IMAGE (λn. {s | p s n}) 𝕌(:γ))
- LT_SUC
-
⊢ ∀a b. a < SUC b ⇔ a < b ∨ a = b
- LE_SUC
-
⊢ ∀a b. a ≤ SUC b ⇔ a ≤ b ∨ a = SUC b
- HALF_POS
-
⊢ 0 < 1 / 2
- HALF_LT_1
-
⊢ 1 / 2 < 1
- HALF_CANCEL
-
⊢ 2 * (1 / 2) = 1
- X_HALF_HALF
-
⊢ ∀x. 1 / 2 * x + 1 / 2 * x = x
- ONE_MINUS_HALF
-
⊢ 1 − 1 / 2 = 1 / 2
- POW_HALF_POS
-
⊢ ∀n. 0 < (1 / 2) pow n
- POW_HALF_SMALL
-
⊢ ∀e. 0 < e ⇒ ∃n. (1 / 2) pow n < e
- POW_HALF_MONO
-
⊢ ∀m n. m ≤ n ⇒ (1 / 2) pow n ≤ (1 / 2) pow m
- REAL_LE_LT_MUL
-
⊢ ∀x y. 0 ≤ x ∧ 0 < y ⇒ 0 ≤ x * y
- REAL_LT_LE_MUL
-
⊢ ∀x y. 0 < x ∧ 0 ≤ y ⇒ 0 ≤ x * y
- REAL_MUL_IDEMPOT
-
⊢ ∀r. r * r = r ⇔ r = 0 ∨ r = 1
- REAL_SUP_LE_X
-
⊢ ∀P x. (∃r. P r) ∧ (∀r. P r ⇒ r ≤ x) ⇒ sup P ≤ x
- REAL_X_LE_SUP
-
⊢ ∀P x. (∃r. P r) ∧ (∃z. ∀r. P r ⇒ r ≤ z) ∧ (∃r. P r ∧ x ≤ r) ⇒ x ≤ sup P
- INF_DEF_ALT
-
⊢ ∀p. inf p = -sup (λr. -r ∈ p)
- LE_INF
-
⊢ ∀p r. (∃x. x ∈ p) ∧ (∀x. x ∈ p ⇒ r ≤ x) ⇒ r ≤ inf p
- INF_LE
-
⊢ ∀p r. (∃z. ∀x. x ∈ p ⇒ z ≤ x) ∧ (∃x. x ∈ p ∧ x ≤ r) ⇒ inf p ≤ r
- INF_GREATER
-
⊢ ∀p z. (∃x. x ∈ p) ∧ inf p < z ⇒ ∃x. x ∈ p ∧ x < z
- INF_CLOSE
-
⊢ ∀p e. (∃x. x ∈ p) ∧ 0 < e ⇒ ∃x. x ∈ p ∧ x < inf p + e
- INCREASING_SEQ
-
⊢ ∀f l.
(∀n. f n ≤ f (SUC n)) ∧ (∀n. f n ≤ l) ∧ (∀e. 0 < e ⇒ ∃n. l < f n + e) ⇒
f --> l
- SEQ_SANDWICH
-
⊢ ∀f g h l. f --> l ∧ h --> l ∧ (∀n. f n ≤ g n ∧ g n ≤ h n) ⇒ g --> l
- SER_POS
-
⊢ ∀f. summable f ∧ (∀n. 0 ≤ f n) ⇒ 0 ≤ suminf f
- SER_POS_MONO
-
⊢ ∀f. (∀n. 0 ≤ f n) ⇒ mono (λn. sum (0,n) f)
- POS_SUMMABLE
-
⊢ ∀f. (∀n. 0 ≤ f n) ∧ (∃x. ∀n. sum (0,n) f ≤ x) ⇒ summable f
- SUMMABLE_LE
-
⊢ ∀f x. summable f ∧ (∀n. sum (0,n) f ≤ x) ⇒ suminf f ≤ x
- SUMS_EQ
-
⊢ ∀f x. f sums x ⇔ summable f ∧ suminf f = x
- SUMINF_POS
-
⊢ ∀f. (∀n. 0 ≤ f n) ∧ summable f ⇒ 0 ≤ suminf f
- SUM_PICK
-
⊢ ∀n k x. sum (0,n) (λm. if m = k then x else 0) = if k < n then x else 0
- SUM_LT
-
⊢ ∀f g m n.
(∀r. m ≤ r ∧ r < n + m ⇒ f r < g r) ∧ 0 < n ⇒ sum (m,n) f < sum (m,n) g
- SUM_CONST_R
-
⊢ ∀n r. sum (0,n) (K r) = &n * r
- SUMS_ZERO
-
⊢ K 0 sums 0
- SUMINF_ADD
-
⊢ ∀f g.
summable f ∧ summable g ⇒
summable (λn. f n + g n) ∧ suminf f + suminf g = suminf (λn. f n + g n)
- SUMINF_2D
-
⊢ ∀f g h.
(∀m n. 0 ≤ f m n) ∧ (∀n. f n sums g n) ∧ summable g ∧
BIJ h 𝕌(:num) (𝕌(:num) × 𝕌(:num)) ⇒
UNCURRY f ∘ h sums suminf g
- POW_HALF_SER
-
⊢ (λn. (1 / 2) pow (n + 1)) sums 1
- SER_POS_COMPARE
-
⊢ ∀f g.
(∀n. 0 ≤ f n) ∧ summable g ∧ (∀n. f n ≤ g n) ⇒
summable f ∧ suminf f ≤ suminf g
- MINIMAL_EXISTS0
-
⊢ (∃n. P n) ⇔ ∃n. P n ∧ ∀m. m < n ⇒ ¬P m
- MINIMAL_EXISTS
-
⊢ ∀P. (∃n. P n) ⇔ P (minimal P) ∧ ∀n. n < minimal P ⇒ ¬P n
- MINIMAL_EXISTS_IMP
-
⊢ ∀P. (∃n. P n) ⇒ ∃m. P m ∧ ∀n. n < m ⇒ ¬P n
- MINIMAL_EQ_IMP
-
⊢ ∀m p. p m ∧ (∀n. n < m ⇒ ¬p n) ⇒ m = minimal p
- MINIMAL_SUC
-
⊢ ∀n p.
SUC n = minimal p ∧ p (SUC n) ⇔ ¬p 0 ∧ n = minimal (p ∘ SUC) ∧ p (SUC n)
- MINIMAL_EQ
-
⊢ ∀p m. p m ∧ m = minimal p ⇔ p m ∧ ∀n. n < m ⇒ ¬p n
- MINIMAL_SUC_IMP
-
⊢ ∀n p. p (SUC n) ∧ ¬p 0 ∧ n = minimal (p ∘ SUC) ⇒ SUC n = minimal p