- wellfounded_WF
-
⊢ wellfounded R ⇔ WF (CURRY R)
- wellorder_EMPTY
-
⊢ wellorder ∅
- wellorder_SING
-
⊢ wellorder {(x,y)} ⇔ x = y
- rrestrict_SUBSET
-
⊢ rrestrict r s ⊆ r
- wellfounded_subset
-
⊢ ∀r0 r. wellfounded r ∧ r0 ⊆ r ⇒ wellfounded r0
- mkWO_destWO
-
⊢ ∀a. mkWO (destWO a) = a
- destWO_mkWO
-
⊢ ∀r. wellorder r ⇒ destWO (mkWO r) = r
- WIN_elsOf
-
⊢ (x,y) WIN w ⇒ x ∈ elsOf w ∧ y ∈ elsOf w
- WLE_elsOf
-
⊢ (x,y) WLE w ⇒ x ∈ elsOf w ∧ y ∈ elsOf w
- WIN_trichotomy
-
⊢ ∀x y. x ∈ elsOf w ∧ y ∈ elsOf w ⇒ (x,y) WIN w ∨ x = y ∨ (y,x) WIN w
- WIN_REFL
-
⊢ (x,x) WIN w ⇔ F
- WLE_TRANS
-
⊢ (x,y) WLE w ∧ (y,z) WLE w ⇒ (x,z) WLE w
- WLE_ANTISYM
-
⊢ (x,y) WLE w ∧ (y,x) WLE w ⇒ x = y
- WIN_WLE
-
⊢ (x,y) WIN w ⇒ (x,y) WLE w
- elsOf_WLE
-
⊢ x ∈ elsOf w ⇔ (x,x) WLE w
- transitive_strict
-
⊢ transitive r ∧ antisym r ⇒ transitive (strict r)
- WIN_TRANS
-
⊢ (x,y) WIN w ∧ (y,z) WIN w ⇒ (x,z) WIN w
- WIN_WF
-
⊢ wellfounded (λp. p WIN w)
- WIN_WF2
-
⊢ WF (λx y. (x,y) WIN w)
- strict_subset
-
⊢ r1 ⊆ r2 ⇒ strict r1 ⊆ strict r2
- transitive_rrestrict
-
⊢ transitive r ⇒ transitive (rrestrict r s)
- antisym_rrestrict
-
⊢ antisym r ⇒ antisym (rrestrict r s)
- linear_order_rrestrict
-
⊢ linear_order r (domain r ∪ range r) ⇒
linear_order (rrestrict r s)
(domain (rrestrict r s) ∪ range (rrestrict r s))
- reflexive_rrestrict
-
⊢ reflexive r (domain r ∪ range r) ⇒
reflexive (rrestrict r s) (domain (rrestrict r s) ∪ range (rrestrict r s))
- wellorder_rrestrict
-
⊢ wellorder (rrestrict (destWO w) s)
- WIN_wobound
-
⊢ (x,y) WIN wobound z w ⇔ (x,z) WIN w ∧ (y,z) WIN w ∧ (x,y) WIN w
- WLE_wobound
-
⊢ (x,y) WLE wobound z w ⇔ (x,z) WIN w ∧ (y,z) WIN w ∧ (x,y) WLE w
- wellorder_cases
-
⊢ ∀w. ∃s. wellorder s ∧ w = mkWO s
- WEXTENSION
-
⊢ w1 = w2 ⇔ ∀a b. (a,b) WLE w1 ⇔ (a,b) WLE w2
- wobound2
-
⊢ (a,b) WIN w ⇒ wobound a (wobound b w) = wobound a w
- wellorder_fromNat
-
⊢ wellorder {(i,j) | i ≤ j ∧ j < n}
- INJ_preserves_transitive
-
⊢ transitive r ∧ INJ f (domain r ∪ range r) t ⇒ transitive (IMAGE (f ## f) r)
- INJ_preserves_antisym
-
⊢ antisym r ∧ INJ f (domain r ∪ range r) t ⇒ antisym (IMAGE (f ## f) r)
- INJ_preserves_linear_order
-
⊢ linear_order r (domain r ∪ range r) ∧ INJ f (domain r ∪ range r) t ⇒
linear_order (IMAGE (f ## f) r) (IMAGE f (domain r ∪ range r))
- domain_IMAGE_ff
-
⊢ domain (IMAGE (f ## g) r) = IMAGE f (domain r)
- range_IMAGE_ff
-
⊢ range (IMAGE (f ## g) r) = IMAGE g (range r)
- INJ_preserves_wellorder
-
⊢ wellorder r ∧ INJ f (domain r ∪ range r) t ⇒ wellorder (IMAGE (f ## f) r)
- wellorder_fromNat_SUM
-
⊢ wellorder {(INL i,INL j) | i ≤ j ∧ j < n}
- fromNatWO_11
-
⊢ fromNatWO i = fromNatWO j ⇔ i = j
- elsOf_fromNatWO
-
⊢ elsOf (fromNatWO n) = IMAGE INL (count n)
- WLE_WIN
-
⊢ (x,y) WLE w ⇒ x = y ∨ (x,y) WIN w
- elsOf_wobound
-
⊢ elsOf (wobound x w) = {y | (y,x) WIN w}
- orderiso_thm
-
⊢ orderiso w1 w2 ⇔
∃f. BIJ f (elsOf w1) (elsOf w2) ∧ ∀x y. (x,y) WIN w1 ⇒ (f x,f y) WIN w2
- orderiso_REFL
-
⊢ ∀w. orderiso w w
- orderiso_SYM
-
⊢ ∀w1 w2. orderiso w1 w2 ⇒ orderiso w2 w1
- orderiso_TRANS
-
⊢ ∀w1 w2 w3. orderiso w1 w2 ∧ orderiso w2 w3 ⇒ orderiso w1 w3
- orderlt_REFL
-
⊢ orderlt w w ⇔ F
- wobounds_preserve_bijections
-
⊢ BIJ f (elsOf w1) (elsOf w2) ∧ x ∈ elsOf w1 ∧
(∀x y. (x,y) WIN w1 ⇒ (f x,f y) WIN w2) ⇒
BIJ f (elsOf (wobound x w1)) (elsOf (wobound (f x) w2))
- orderlt_TRANS
-
⊢ ∀w1 w2 w3. orderlt w1 w2 ∧ orderlt w2 w3 ⇒ orderlt w1 w3
- wo2wo_thm
-
⊢ ∀x.
wo2wo w w2 x =
(let
s0 = IMAGE (wo2wo w w2) (iseg w x) ;
s1 = IMAGE THE (s0 DELETE NONE)
in
if s1 = elsOf w2 then NONE else wleast w2 s1)
- wleast_IN_wo
-
⊢ wleast w s = SOME x ⇒
x ∈ elsOf w ∧ x ∉ s ∧ ∀y. y ∈ elsOf w ∧ y ∉ s ∧ x ≠ y ⇒ (x,y) WIN w
- wleast_EQ_NONE
-
⊢ wleast w s = NONE ⇒ elsOf w ⊆ s
- wo2wo_IN_w2
-
⊢ ∀x y. wo2wo w1 w2 x = SOME y ⇒ y ∈ elsOf w2
- IMAGE_wo2wo_SUBSET
-
⊢ woseg w1 w2 x ⊆ elsOf w2
- wo2wo_EQ_NONE
-
⊢ ∀x. wo2wo w1 w2 x = NONE ⇒ ∀y. (x,y) WIN w1 ⇒ wo2wo w1 w2 y = NONE
- wo2wo_EQ_SOME_downwards
-
⊢ ∀x y.
wo2wo w1 w2 x = SOME y ⇒
∀x0. (x0,x) WIN w1 ⇒ ∃y0. wo2wo w1 w2 x0 = SOME y0
- mono_woseg
-
⊢ (x1,x2) WIN w1 ⇒ woseg w1 w2 x1 ⊆ woseg w1 w2 x2
- wo2wo_11
-
⊢ x1 ∈ elsOf w1 ∧ x2 ∈ elsOf w1 ∧ wo2wo w1 w2 x1 = SOME y ∧
wo2wo w1 w2 x2 = SOME y ⇒
x1 = x2
- wleast_SUBSET
-
⊢ wleast w s1 = SOME x ∧ wleast w s2 = SOME y ∧ s1 ⊆ s2 ⇒ x = y ∨ (x,y) WIN w
- wo2wo_mono
-
⊢ wo2wo w1 w2 x0 = SOME y0 ∧ wo2wo w1 w2 x = SOME y ∧ (x0,x) WIN w1 ⇒
(y0,y) WIN w2
- wo2wo_ONTO
-
⊢ x ∈ elsOf w1 ∧ wo2wo w1 w2 x = SOME y ∧ (y0,y) WIN w2 ⇒
∃x0. x0 ∈ elsOf w1 ∧ wo2wo w1 w2 x0 = SOME y0
- wo2wo_EQ_NONE_woseg
-
⊢ wo2wo w1 w2 x = NONE ⇒ elsOf w2 = woseg w1 w2 x
- orderlt_trichotomy
-
⊢ orderlt w1 w2 ∨ orderiso w1 w2 ∨ orderlt w2 w1
- elsOf_wZERO
-
⊢ elsOf wZERO = ∅
- WIN_wZERO
-
⊢ (x,y) WIN wZERO ⇔ F
- WLE_wZERO
-
⊢ (x,y) WLE wZERO ⇔ F
- orderiso_wZERO
-
⊢ orderiso wZERO w ⇔ w = wZERO
- elsOf_EQ_EMPTY
-
⊢ elsOf w = ∅ ⇔ w = wZERO
- LT_wZERO
-
⊢ orderlt w wZERO ⇔ F
- orderlt_WF
-
⊢ WF orderlt
- orderlt_orderiso
-
⊢ orderiso x0 y0 ∧ orderiso a0 b0 ⇒ (orderlt x0 a0 ⇔ orderlt y0 b0)
- finite_iso
-
⊢ orderiso w1 w2 ⇒ (finite w1 ⇔ finite w2)
- finite_wZERO
-
⊢ finite wZERO
- orderiso_unique
-
⊢ BIJ f1 (elsOf w1) (elsOf w2) ∧ BIJ f2 (elsOf w1) (elsOf w2) ∧
(∀x y. (x,y) WIN w1 ⇒ (f1 x,f1 y) WIN w2) ∧
(∀x y. (x,y) WIN w1 ⇒ (f2 x,f2 y) WIN w2) ⇒
∀x. x ∈ elsOf w1 ⇒ f1 x = f2 x
- seteq_wlog
-
⊢ ∀f.
(∀a b. P a b ⇒ P b a) ∧ (∀x a b. P a b ∧ x ∈ f a ⇒ x ∈ f b) ⇒
∀a b. P a b ⇒ f a = f b
- wo_INDUCTION
-
⊢ ∀P w.
(∀x. (∀y. (y,x) WIN w ⇒ y ∈ elsOf w ⇒ P y) ⇒ x ∈ elsOf w ⇒ P x) ⇒
∀x. x ∈ elsOf w ⇒ P x
- FORALL_NUM
-
⊢ (∀n. P n) ⇔ P 0 ∧ ∀n. P (SUC n)
- strict_UNION
-
⊢ strict (r1 ∪ r2) = strict r1 ∪ strict r2
- WLE_WIN_EQ
-
⊢ (x,y) WLE w ⇔ x = y ∧ x ∈ elsOf w ∨ (x,y) WIN w
- wellorder_remove
-
⊢ wellorder {(x,y) | x ≠ e ∧ y ≠ e ∧ (x,y) WLE w}
- elsOf_remove
-
⊢ elsOf (remove e w) = elsOf w DELETE e
- WIN_remove
-
⊢ (x,y) WIN remove e w ⇔ x ≠ e ∧ y ≠ e ∧ (x,y) WIN w
- wellorder_ADD1
-
⊢ e ∉ elsOf w ⇒ wellorder (destWO w ∪ {(x,e) | x ∈ elsOf w} ∪ {(e,e)})
- elsOf_ADD1
-
⊢ elsOf (ADD1 e w) = e INSERT elsOf w
- WIN_ADD1
-
⊢ (x,y) WIN ADD1 e w ⇔ e ∉ elsOf w ∧ x ∈ elsOf w ∧ y = e ∨ (x,y) WIN w
- elsOf_cardeq_iso
-
⊢ INJ f (elsOf wo) 𝕌(:α) ⇒ ∃wo'. orderiso wo wo'
- allsets_wellorderable
-
⊢ ∀s. ∃wo. elsOf wo = s