Theory "Encode"

Parents     indexedLists   patternMatches

Signature

Type Arity
tree 1
Constant Type
Node :α -> α tree list -> α tree
biprefix :α list -> α list -> bool
collision_free :num -> (num -> bool) -> bool
encode_blist :num -> (β -> α list) -> β list -> α list
encode_bnum :num -> num -> bool list
encode_bool :bool -> bool list
encode_list :(α -> bool list) -> α list -> bool list
encode_num :num -> bool list
encode_option :(α -> bool list) -> α option -> bool list
encode_prod :(α -> bool list) -> (β -> bool list) -> α # β -> bool list
encode_sum :(α -> bool list) -> (β -> bool list) -> α + β -> bool list
encode_tree :(α -> bool list) -> α tree -> bool list
encode_unit :unit -> bool list
lift_blist :num -> (α -> bool) -> α list -> bool
lift_option :(α -> bool) -> α option -> bool
lift_prod :(α -> bool) -> (β -> bool) -> α # β -> bool
lift_sum :(α -> bool) -> (β -> bool) -> α + β -> bool
lift_tree :(α -> bool) -> α tree -> bool
tree1_size :(α -> num) -> α tree list -> num
tree_CASE :α tree -> (α -> α tree list -> β) -> β
tree_size :(α -> num) -> α tree -> num
wf_encoder :(α -> bool) -> (α -> bool list) -> bool
wf_pred :(α -> bool) -> bool
wf_pred_bnum :num -> (num -> bool) -> bool

Definitions

wf_pred_def
⊢ ∀p. wf_pred p ⇔ ∃x. p x
wf_pred_bnum_def
⊢ ∀m p. wf_pred_bnum m p ⇔ wf_pred p ∧ ∀x. p x ⇒ x < 2 ** m
wf_encoder_def
⊢ ∀p e. wf_encoder p e ⇔ ∀x y. p x ∧ p y ∧ e y ≼ e x ⇒ (x = y)
tree_TY_DEF
⊢ ∃rep.
      TYPE_DEFINITION
        (λa0'.
             ∀ $var$('tree') $var$('@temp @ind_typeEncode0list').
                 (∀a0'.
                      (∃a0 a1.
                           (a0' =
                            (λa0 a1.
                                 ind_type$CONSTR 0 a0
                                   (ind_type$FCONS a1 (λn. ind_type$BOTTOM)))
                              a0 a1) ∧ $var$('@temp @ind_typeEncode0list') a1) ⇒
                      $var$('tree') a0') ∧
                 (∀a1'.
                      (a1' = ind_type$CONSTR (SUC 0) ARB (λn. ind_type$BOTTOM)) ∨
                      (∃a0 a1.
                           (a1' =
                            (λa0 a1.
                                 ind_type$CONSTR (SUC (SUC 0)) ARB
                                   (ind_type$FCONS a0
                                      (ind_type$FCONS a1 (λn. ind_type$BOTTOM))))
                              a0 a1) ∧ $var$('tree') a0 ∧
                           $var$('@temp @ind_typeEncode0list') a1) ⇒
                      $var$('@temp @ind_typeEncode0list') a1') ⇒
                 $var$('tree') a0') rep
tree_size_def
⊢ (∀f a0 a1. tree_size f (Node a0 a1) = 1 + (f a0 + tree1_size f a1)) ∧
  (∀f. tree1_size f [] = 0) ∧
  ∀f a0 a1. tree1_size f (a0::a1) = 1 + (tree_size f a0 + tree1_size f a1)
tree_case_def
⊢ ∀a0 a1 f. tree_CASE (Node a0 a1) f = f a0 a1
lift_sum_def
⊢ ∀p1 p2 x. lift_sum p1 p2 x ⇔ case x of INL x1 => p1 x1 | INR x2 => p2 x2
lift_prod_def
⊢ ∀p1 p2 x. lift_prod p1 p2 x ⇔ p1 (FST x) ∧ p2 (SND x)
lift_option_def
⊢ ∀p x. lift_option p x ⇔ case x of NONE => T | SOME y => p y
lift_blist_def
⊢ ∀m p x. lift_blist m p x ⇔ EVERY p x ∧ (LENGTH x = m)
encode_unit_def
⊢ ∀v0. encode_unit v0 = []
encode_sum_def
⊢ (∀xb yb x. encode_sum xb yb (INL x) = T::xb x) ∧
  ∀xb yb y. encode_sum xb yb (INR y) = F::yb y
encode_prod_def
⊢ ∀xb yb x y. encode_prod xb yb (x,y) = xb x ++ yb y
encode_option_def
⊢ (∀xb. encode_option xb NONE = [F]) ∧
  ∀xb x. encode_option xb (SOME x) = T::xb x
encode_num_primitive_def
⊢ encode_num =
  WFREC
    (@R.
         WF R ∧ (∀n. n ≠ 0 ∧ EVEN n ⇒ R ((n − 2) DIV 2) n) ∧
         ∀n. n ≠ 0 ∧ ¬EVEN n ⇒ R ((n − 1) DIV 2) n)
    (λencode_num a.
         I
           (if a = 0 then [T; T]
            else if EVEN a then F::encode_num ((a − 2) DIV 2)
            else T::F::encode_num ((a − 1) DIV 2)))
encode_list_def
⊢ (∀xb. encode_list xb [] = [F]) ∧
  ∀xb x xs. encode_list xb (x::xs) = T::(xb x ++ encode_list xb xs)
encode_bool_def
⊢ ∀x. encode_bool x = [x]
encode_bnum_def
⊢ (∀n. encode_bnum 0 n = []) ∧
  ∀m n. encode_bnum (SUC m) n = ¬EVEN n::encode_bnum m (n DIV 2)
encode_blist_def
⊢ (∀e l. encode_blist 0 e l = []) ∧
  ∀m e l. encode_blist (SUC m) e l = e (HD l) ++ encode_blist m e (TL l)
collision_free_def
⊢ ∀m p.
      collision_free m p ⇔
      ∀x y. p x ∧ p y ∧ (x MOD 2 ** m = y MOD 2 ** m) ⇒ (x = y)
biprefix_def
⊢ ∀a b. biprefix a b ⇔ b ≼ a ∨ a ≼ b


Theorems

wf_pred_bnum_total
⊢ ∀m. wf_pred_bnum m (λx. x < 2 ** m)
wf_pred_bnum
⊢ ∀m p. wf_pred_bnum m p ⇒ collision_free m p
wf_encoder_total
⊢ ∀p e. wf_encoder (K T) e ⇒ wf_encoder p e
wf_encoder_eq
⊢ ∀p e f. wf_encoder p e ∧ (∀x. p x ⇒ (e x = f x)) ⇒ wf_encoder p f
wf_encoder_alt
⊢ wf_encoder p e ⇔ ∀x y. p x ∧ p y ∧ biprefix (e x) (e y) ⇒ (x = y)
wf_encode_unit
⊢ ∀p. wf_encoder p encode_unit
wf_encode_tree
⊢ ∀p e. wf_encoder p e ⇒ wf_encoder (lift_tree p) (encode_tree e)
wf_encode_sum
⊢ ∀p1 p2 e1 e2.
      wf_encoder p1 e1 ∧ wf_encoder p2 e2 ⇒
      wf_encoder (lift_sum p1 p2) (encode_sum e1 e2)
wf_encode_prod
⊢ ∀p1 p2 e1 e2.
      wf_encoder p1 e1 ∧ wf_encoder p2 e2 ⇒
      wf_encoder (lift_prod p1 p2) (encode_prod e1 e2)
wf_encode_option
⊢ ∀p e. wf_encoder p e ⇒ wf_encoder (lift_option p) (encode_option e)
wf_encode_num
⊢ ∀p. wf_encoder p encode_num
wf_encode_list
⊢ ∀p e. wf_encoder p e ⇒ wf_encoder (EVERY p) (encode_list e)
wf_encode_bool
⊢ ∀p. wf_encoder p encode_bool
wf_encode_bnum_collision_free
⊢ ∀m p. wf_encoder p (encode_bnum m) ⇔ collision_free m p
wf_encode_bnum
⊢ ∀m p. wf_pred_bnum m p ⇒ wf_encoder p (encode_bnum m)
wf_encode_blist
⊢ ∀m p e. wf_encoder p e ⇒ wf_encoder (lift_blist m p) (encode_blist m e)
tree_nchotomy
⊢ ∀tt. ∃a l. tt = Node a l
tree_induction
⊢ ∀P0 P1.
      (∀l. P1 l ⇒ ∀a. P0 (Node a l)) ∧ P1 [] ∧ (∀t l. P0 t ∧ P1 l ⇒ P1 (t::l)) ⇒
      (∀t. P0 t) ∧ ∀l. P1 l
tree_ind
⊢ ∀p. (∀a ts. (∀t. MEM t ts ⇒ p t) ⇒ p (Node a ts)) ⇒ ∀t. p t
tree_case_eq
⊢ (tree_CASE x f = v) ⇔ ∃a l. (x = Node a l) ∧ (f a l = v)
tree_case_cong
⊢ ∀M M' f.
      (M = M') ∧ (∀a0 a1. (M' = Node a0 a1) ⇒ (f a0 a1 = f' a0 a1)) ⇒
      (tree_CASE M f = tree_CASE M' f')
tree_Axiom
⊢ ∀f0 f1 f2.
      ∃fn0 fn1.
          (∀a0 a1. fn0 (Node a0 a1) = f0 a0 a1 (fn1 a1)) ∧ (fn1 [] = f1) ∧
          ∀a0 a1. fn1 (a0::a1) = f2 a0 a1 (fn0 a0) (fn1 a1)
tree_11
⊢ ∀a0 a1 a0' a1'. (Node a0 a1 = Node a0' a1') ⇔ (a0 = a0') ∧ (a1 = a1')
lift_tree_def
⊢ lift_tree p (Node a ts) ⇔ p a ∧ EVERY (lift_tree p) ts
lift_blist_suc
⊢ ∀n p h t. lift_blist (SUC n) p (h::t) ⇔ p h ∧ lift_blist n p t
encode_tree_def
⊢ encode_tree e (Node a ts) = e a ++ encode_list (encode_tree e) ts
encode_prod_alt
⊢ ∀xb yb p. encode_prod xb yb p = xb (FST p) ++ yb (SND p)
encode_num_ind
⊢ ∀P.
      (∀n.
           (n ≠ 0 ∧ EVEN n ⇒ P ((n − 2) DIV 2)) ∧
           (n ≠ 0 ∧ ¬EVEN n ⇒ P ((n − 1) DIV 2)) ⇒
           P n) ⇒
      ∀v. P v
encode_num_def
⊢ encode_num n =
  if n = 0 then [T; T]
  else if EVEN n then F::encode_num ((n − 2) DIV 2)
  else T::F::encode_num ((n − 1) DIV 2)
encode_list_cong
⊢ ∀l1 l2 f1 f2.
      (l1 = l2) ∧ (∀x. MEM x l2 ⇒ (f1 x = f2 x)) ⇒
      (encode_list f1 l1 = encode_list f2 l2)
encode_bnum_length
⊢ ∀m n. LENGTH (encode_bnum m n) = m
encode_bnum_inj
⊢ ∀m x y.
      x < 2 ** m ∧ y < 2 ** m ∧ (encode_bnum m x = encode_bnum m y) ⇒ (x = y)
encode_bnum_compute
⊢ (∀n. encode_bnum 0 n = []) ∧
  (∀m n.
       encode_bnum (NUMERAL (BIT1 m)) n =
       ¬EVEN n::encode_bnum (NUMERAL (BIT1 m) − 1) (n DIV 2)) ∧
  ∀m n.
      encode_bnum (NUMERAL (BIT2 m)) n =
      ¬EVEN n::encode_bnum (NUMERAL (BIT1 m)) (n DIV 2)
encode_blist_compute
⊢ (∀e l. encode_blist 0 e l = []) ∧
  (∀m e l.
       encode_blist (NUMERAL (BIT1 m)) e l =
       e (HD l) ++ encode_blist (NUMERAL (BIT1 m) − 1) e (TL l)) ∧
  ∀m e l.
      encode_blist (NUMERAL (BIT2 m)) e l =
      e (HD l) ++ encode_blist (NUMERAL (BIT1 m)) e (TL l)
datatype_tree
⊢ DATATYPE (tree Node)
biprefix_sym
⊢ ∀x y. biprefix x y ⇒ biprefix y x
biprefix_refl
⊢ ∀x. biprefix x x
biprefix_cons
⊢ ∀a b c d. biprefix (a::b) (c::d) ⇔ (a = c) ∧ biprefix b d
biprefix_appends
⊢ ∀a b c. biprefix (a ++ b) (a ++ c) ⇔ biprefix b c
biprefix_append
⊢ ∀a b c d. biprefix (a ++ b) (c ++ d) ⇒ biprefix a c