Theory "HolSmt"

Parents     transc   Omega   int_arith   blast   bitstring

Signature

Constant Type
array_ext :(α -> β) -> (α -> β) -> α
xor :bool -> bool -> bool

Definitions

xor_def
⊢ ∀x y. xor x y ⇔ (x ⇎ y)
array_ext_def
⊢ ∀A B. array_ext A B = @i. A i ≠ B i


Theorems

VALID_IFF_TRUE
⊢ ∀p. p ⇒ (p ⇔ T)
T_AND
⊢ ∀p q. (T ∧ p ⇔ T ∧ q) ⇒ (p ⇔ q)
t035
⊢ (1w = x) ∨ (0 >< 0) x ≠ 1w
t034
⊢ (1w + x = y) ⇒ x ' 0 ⇒ ¬y ' 0
t033
⊢ (0w = 4294967295w * sw2sw x) ⇒ (x ' 2 ⇎ ¬x ' 0 ∧ ¬x ' 1)
t032
⊢ (0w = 4294967295w * sw2sw x) ⇒ (x ' 1 ⇎ ¬x ' 0)
t031
⊢ (0w = 4294967295w * sw2sw x) ⇒ ¬x ' 0
t030
⊢ (p ⇔ (1w = x)) ⇔ (x = if p then 1w else 0w)
t029
⊢ (p ⇔ (x = 1w)) ⇔ (x = if p then 1w else 0w)
t028
⊢ ((1w = x) ⇔ p) ⇔ (x = if p then 1w else 0w)
t027
⊢ ((x = 1w) ⇔ p) ⇔ (x = if p then 1w else 0w)
t026
⊢ (0w = x) ∨ x ' 0 ∨ x ' 1 ∨ x ' 2 ∨ x ' 3 ∨ x ' 4 ∨ x ' 5 ∨ x ' 6 ∨ x ' 7
t025
⊢ (1w = ¬x ‖ ¬y) ∨ ¬(¬x ' 0 ∨ ¬y ' 0)
t024
⊢ (0w = ¬x) ∨ ¬x ' 0
t023
⊢ ¬x ' 0 ⇒ (1w = ¬x)
t022
⊢ ¬x ' 0 ⇒ (0w = x)
t021
⊢ x ' 0 ⇒ (1w = x)
t020
⊢ x ' 0 ⇒ (0w = ¬x)
t019
⊢ (1w = ¬x) ∨ x ' 0
t018
⊢ (x = y) ⇒ x ' i ⇒ y ' i
t017
⊢ x ≠ ¬x
t016
⊢ x ≠ y ∨ x + -1 * y ≥ 0
t015
⊢ x ≥ y ∨ x ≤ y
t014
⊢ ¬(x ≥ 0) ∨ ¬(x ≤ -1)
t013
⊢ ¬(x ≥ 0) ∨ x ≥ -1
t012
⊢ ¬(x ≤ -1) ∨ x ≤ 0
t011
⊢ ¬(x ≤ 0) ∨ x ≤ 1
t010
⊢ (x = y) ∨ ¬(x ≤ y) ∨ ¬(x ≥ y)
t009
⊢ x ≠ y ∨ x + -1 * y ≤ 0
t008
⊢ x ≠ y ∨ x + -1 * y ≥ 0
t007
⊢ x ≠ y ∨ x ≥ y
t006
⊢ x ≠ y ∨ x ≤ y
t005
⊢ (f = g) ∨ f (array_ext f g) ≠ g (array_ext f g)
t004
⊢ (x = y) ∨ (f⦇x ↦ z⦈ y = f y)
t003
⊢ (x = y) ∨ (f⦇y ↦ z⦈ x = f x)
t002
⊢ (x = y) ∨ (f y = f⦇x ↦ z⦈ y)
t001
⊢ (x = y) ∨ (f x = f⦇y ↦ z⦈ x)
r255
⊢ 0w ‖ x = x
r254
⊢ (x && y) && z = x && y && z
r253
⊢ (0 >< 0) x = x
r252
⊢ x * y = y * x
r251
⊢ x <₊ y ⇔ ¬(y ≤₊ x)
r250
⊢ (7 >< 0) x = x
r249
⊢ (1w = x && y) ⇔ (1w = y) ∧ (1w = x)
r248
⊢ (1w = x && y) ⇔ (1w = x) ∧ (1w = y)
r247
⊢ x && y && z = (x && y) && z
r246
⊢ x && y && z = y && x && z
r245
⊢ x && y = y && x
r244
 [...] ⊢ (n2w y = 0w @@ x) ⇔ (n2w y = x)
r243
 [...] ⊢ (n2w y = 0w @@ x) ⇔ (x = n2w y)
r242
 [...] ⊢ (0w @@ x = n2w y) ⇔ (n2w y = x)
r241
 [...] ⊢ (0w @@ x = n2w y) ⇔ (x = n2w y)
r240
 [.] ⊢ w2w (n2w x) = n2w x
r239
 [..] ⊢ 0w @@ n2w x = n2w x
r238
⊢ (x + z = y + x) ⇔ (y = z)
r237
⊢ 1w + (1w + x) = 2w + x
r236
⊢ x + y = y + x
r235
⊢ 0w + x = x
r234
⊢ 1 * x = x
r233
⊢ 0 * x = 0
r232
⊢ x + y − u * z = x + (y + -u * z)
r231
⊢ x + y − u * z = x + (-u * z + y)
r230
⊢ x + y − u * z = -u * z + (x + y)
r229
⊢ x + y − z = x + (-1 * z + y)
r228
⊢ x + y − z = x + (y + -1 * z)
r227
⊢ x − u * y = -u * y + x
r226
⊢ x − u * y = x + -u * y
r225
⊢ x − y = -1 * y + x
r224
⊢ x − y = x + -1 * y
r223
⊢ x − 0 = x
r222
⊢ 0 − u * x = -u * x
r221
⊢ 0 − x = -x
r220
⊢ x + (y + z) = y + (x + z)
r219
⊢ x + (y + z) = y + (z + x)
r218
⊢ x + y + z = x + (z + y)
r217
⊢ x + y + z = x + (y + z)
r216
⊢ x + x = 2 * x
r215
⊢ x + y = y + x
r214
⊢ x + 0 = x
r213
⊢ 0 + x = x
r212
⊢ -u * x + (v * y + -1 * z) < -a ⇔ ¬(u * x + (-v * y + z) ≤ a)
r211
⊢ -u * x + (-1 * y + -w * z) < -a ⇔ ¬(u * x + (y + w * z) ≤ a)
r210
⊢ -1 * x + (-v * y + -w * z) < -a ⇔ ¬(x + (v * y + w * z) ≤ a)
r209
⊢ -1 * x + (-v * y + -w * z) < a ⇔ ¬(x + (v * y + w * z) ≤ -a)
r208
⊢ -1 * x + (-v * y + w * z) < -a ⇔ ¬(x + (v * y + -w * z) ≤ a)
r207
⊢ -1 * x + (-v * y + w * z) < a ⇔ ¬(x + (v * y + -w * z) ≤ -a)
r206
⊢ -1 * x + (v * y + -w * z) < -a ⇔ ¬(x + (-v * y + w * z) ≤ a)
r205
⊢ -1 * x + (v * y + -w * z) < a ⇔ ¬(x + (-v * y + w * z) ≤ -a)
r204
⊢ -1 * x + (v * y + w * z) < -a ⇔ ¬(x + (-v * y + -w * z) ≤ a)
r203
⊢ -1 * x + (v * y + w * z) < a ⇔ ¬(x + (-v * y + -w * z) ≤ -a)
r202
⊢ -u * x + (-v * y + -w * z) < 0 ⇔ ¬(u * x + (v * y + w * z) ≤ 0)
r201
⊢ -u * x + (-v * y + w * z) < 0 ⇔ ¬(u * x + (v * y + -w * z) ≤ 0)
r200
⊢ -u * x + (-v * y + -w * z) < -a ⇔ ¬(u * x + (v * y + w * z) ≤ a)
r199
⊢ -u * x + (-v * y + -w * z) < a ⇔ ¬(u * x + (v * y + w * z) ≤ -a)
r198
⊢ -u * x + (-v * y + w * z) < -a ⇔ ¬(u * x + (v * y + -w * z) ≤ a)
r197
⊢ -u * x + (-v * y + w * z) < a ⇔ ¬(u * x + (v * y + -w * z) ≤ -a)
r196
⊢ -u * x + (v * y + -w * z) < -a ⇔ ¬(u * x + (-v * y + w * z) ≤ a)
r195
⊢ -u * x + (v * y + -w * z) < a ⇔ ¬(u * x + (-v * y + w * z) ≤ -a)
r194
⊢ -u * x + (v * y + w * z) < -a ⇔ ¬(u * x + (-v * y + -w * z) ≤ a)
r193
⊢ -u * x + (v * y + w * z) < a ⇔ ¬(u * x + (-v * y + -w * z) ≤ -a)
r192
⊢ -u * x + -v * y < -a ⇔ ¬(u * x + v * y ≤ a)
r191
⊢ -u * x + -v * y < a ⇔ ¬(u * x + v * y ≤ -a)
r190
⊢ -u * x + v * y < -a ⇔ ¬(u * x + -v * y ≤ a)
r189
⊢ -u * x + v * y < a ⇔ ¬(u * x + -v * y ≤ -a)
r188
⊢ -u * x + -v * y < 0 ⇔ ¬(u * x + v * y ≤ 0)
r187
⊢ -u * x + v * y < 0 ⇔ ¬(u * x + -v * y ≤ 0)
r186
⊢ -u * x < -a ⇔ ¬(u * x ≤ a)
r185
⊢ -u * x < a ⇔ ¬(u * x ≤ -a)
r184
⊢ x < y ⇔ ¬(x ≥ y)
r183
⊢ -1 * x + (v * y + w * z) ≤ -a ⇔ x + (-v * y + -w * z) ≥ a
r182
⊢ -u * x + (-v * y + -w * z) ≤ -a ⇔ u * x + (v * y + w * z) ≥ a
r181
⊢ -u * x + (-v * y + -w * z) ≤ a ⇔ u * x + (v * y + w * z) ≥ -a
r180
⊢ -u * x + (-v * y + w * z) ≤ -a ⇔ u * x + (v * y + -w * z) ≥ a
r179
⊢ -u * x + (-v * y + w * z) ≤ a ⇔ u * x + (v * y + -w * z) ≥ -a
r178
⊢ -u * x + (v * y + -w * z) ≤ -a ⇔ u * x + (-v * y + w * z) ≥ a
r177
⊢ -u * x + (v * y + -w * z) ≤ a ⇔ u * x + (-v * y + w * z) ≥ -a
r176
⊢ -u * x + (v * y + w * z) ≤ -a ⇔ u * x + (-v * y + -w * z) ≥ a
r175
⊢ -u * x + (v * y + w * z) ≤ a ⇔ u * x + (-v * y + -w * z) ≥ -a
r174
⊢ -u * x + (-v * y + -w * z) ≤ 0 ⇔ u * x + (v * y + w * z) ≥ 0
r173
⊢ -u * x + (-v * y + w * z) ≤ 0 ⇔ u * x + (v * y + -w * z) ≥ 0
r172
⊢ -u * x + (v * y + -w * z) ≤ 0 ⇔ u * x + (-v * y + w * z) ≥ 0
r171
⊢ -u * x + (v * y + w * z) ≤ 0 ⇔ u * x + (-v * y + -w * z) ≥ 0
r170
⊢ -u * x + -v * y ≤ -a ⇔ u * x + v * y ≥ a
r169
⊢ -u * x + -v * y ≤ a ⇔ u * x + v * y ≥ -a
r168
⊢ -u * x + v * y ≤ -a ⇔ u * x + -v * y ≥ a
r167
⊢ -u * x + v * y ≤ a ⇔ u * x + -v * y ≥ -a
r166
⊢ -u * x + v * y ≤ 0 ⇔ u * x + -v * y ≥ 0
r165
⊢ -u * x ≤ -a ⇔ u * x ≥ a
r164
⊢ -u * x ≤ a ⇔ u * x ≥ -a
r163
⊢ x ≤ y + z ⇔ x + -1 * z ≤ y
r162
⊢ x ≤ y ⇔ x + -1 * y ≤ 0
r161
⊢ x > y ⇔ ¬(x + -1 * y ≤ 0)
r160
⊢ x ≥ y ⇔ x + -1 * y ≥ 0
r159
⊢ x + -1 * y ≥ 0 ⇔ y ≤ x
r158
⊢ (-u * x + (-v * y + -w * z) = -a) ⇔ (u * x + (v * y + w * z) = a)
r157
⊢ (-u * x + (-v * y + w * z) = -a) ⇔ (u * x + (v * y + -w * z) = a)
r156
⊢ (-u * x + (v * y + w * z) = -a) ⇔ (u * x + (-v * y + -w * z) = a)
r155
⊢ (-1 * x + (-v * y + -w * z) = -a) ⇔ (x + (v * y + w * z) = a)
r154
⊢ (-u * x + -v * y = -a) ⇔ (u * x + v * y = a)
r153
⊢ (a = -u * x + (-1 * y + -w * z)) ⇔ (u * x + (y + w * z) = -a)
r152
⊢ (a = -u * x + (-1 * y + w * z)) ⇔ (u * x + (y + -w * z) = -a)
r151
⊢ (-a = -u * x + (-v * y + -w * z)) ⇔ (u * x + (v * y + w * z) = a)
r150
⊢ (-a = -u * x + (-v * y + w * z)) ⇔ (u * x + (v * y + -w * z) = a)
r149
⊢ (-a = -u * x + (v * y + -w * z)) ⇔ (u * x + (-v * y + w * z) = a)
r148
⊢ (-a = -u * x + (v * y + w * z)) ⇔ (u * x + (-v * y + -w * z) = a)
r147
⊢ (a = -u * x + (-v * y + -w * z)) ⇔ (u * x + (v * y + w * z) = -a)
r146
⊢ (a = -u * x + (-v * y + w * z)) ⇔ (u * x + (v * y + -w * z) = -a)
r145
⊢ (a = -u * x + (v * y + -w * z)) ⇔ (u * x + (-v * y + w * z) = -a)
r144
⊢ (a = -u * x + (v * y + w * z)) ⇔ (u * x + (-v * y + -w * z) = -a)
r143
⊢ (a = -u * x + (-v * y + w * z)) ⇔ (u * x + (v * y + (-w * z + a)) = 0)
r142
⊢ (-a = -u * x + v * y) ⇔ (u * x + -v * y = a)
r141
⊢ (a = -u * y + -v * z) ⇔ (u * y + (a + v * z) = 0)
r140
⊢ (a = -u * y + v * z) ⇔ (u * y + (-v * z + a) = 0)
r139
⊢ (a = x + (y + z)) ⇔ (x + (y + (z + -1 * a)) = 0)
r138
⊢ (a = x + (y + z)) ⇔ (x + (y + (-1 * a + z)) = 0)
r137
⊢ (a = -u * x) ⇔ (u * x = -a)
r136
⊢ (0 = -u * x) ⇔ (u * x = 0)
r135
⊢ x + y − z = x + (-1 * z + y)
r134
⊢ x + y − z = x + (y + -1 * z)
r133
⊢ x − 1 = -1 + x
r132
⊢ x − y = -1 * y + x
r131
⊢ x − y = x + -1 * y
r130
⊢ x − y = -y + x
r129
⊢ 0 − x = -1 * x
r128
⊢ 0 − x = -x
r127
⊢ x − 0 = x
r126
⊢ 0 < -x + y ⇔ ¬(y ≤ x)
r125
⊢ x + y < z ⇔ ¬(z + -1 * y ≤ x)
r124
⊢ -x + y < z ⇔ ¬(y + -1 * z ≥ x)
r123
⊢ x < -y + (z + (u + v)) ⇔ ¬(z + (u + (v + -1 * x)) ≤ y)
r122
⊢ x < -y + (z + u) ⇔ ¬(z + (u + -1 * x) ≤ y)
r121
⊢ x < -y + z ⇔ ¬(z + -1 * x ≤ y)
r120
⊢ x < y + -1 * z ⇔ ¬(x + (-1 * y + z) ≥ 0)
r119
⊢ x < y + -1 * z ⇔ ¬(x + -1 * y + z ≥ 0)
r118
⊢ x < y ⇔ ¬(x + -1 * y ≥ 0)
r117
⊢ x < y ⇔ ¬(y + -1 * x ≤ 0)
r116
⊢ x < y ⇔ ¬(x ≥ y)
r115
⊢ x < y ⇔ ¬(y ≤ x)
r114
⊢ x ≤ y + z ⇔ x + (-1 * y + -1 * z) ≤ 0
r113
⊢ x ≤ y + z ⇔ z + -1 * x ≥ -y
r112
⊢ x ≤ y + z ⇔ x + -1 * z ≤ y
r111
⊢ x + -1 * y ≤ z ⇔ x + (-1 * y + -1 * z) ≤ 0
r110
⊢ -x + y ≤ z ⇔ y + -1 * z ≤ x
r109
⊢ -1 * x + y ≤ -z ⇔ x + -1 * y ≥ z
r108
⊢ -1 * x + y ≤ 0 ⇔ x + -1 * y ≥ 0
r107
⊢ x ≤ y ⇔ y + -1 * x ≥ 0
r106
⊢ x ≤ y ⇔ x + -1 * y ≤ 0
r105
⊢ -1 * x ≤ 0 ⇔ x ≥ 0
r104
⊢ 0 ≤ -x + y ⇔ y ≥ x
r103
⊢ x ≤ y ⇔ y ≥ x
r102
⊢ 0 ≤ 1 ⇔ T
r101
⊢ x ≤ x ⇔ T
r100
⊢ x > y + z ⇔ ¬(z + -1 * x ≥ -y)
r099
⊢ x > y ⇔ ¬(y + -1 * x ≥ 0)
r098
⊢ x > y ⇔ ¬(x + -1 * y ≤ 0)
r097
⊢ x > y ⇔ ¬(x ≤ y)
r096
⊢ x > y ⇔ ¬(y ≥ x)
r095
⊢ x + -1 * y ≥ 0 ⇔ y ≤ x
r094
⊢ -1 * x + y ≥ 0 ⇔ x + -1 * y ≤ 0
r093
⊢ -1 * x ≥ -y ⇔ x ≤ y
r092
⊢ -1 * x ≥ 0 ⇔ x ≤ 0
r091
⊢ x ≥ y + z ⇔ y + (z + -1 * x) ≤ 0
r090
⊢ x ≥ y ⇔ y + -1 * x ≤ 0
r089
⊢ x ≥ y ⇔ x + -1 * y ≥ 0
r088
⊢ x ≥ x ⇔ T
r087
⊢ x + (y + (z + u)) = y + (z + (u + x))
r086
⊢ x + (y + z) = y + (x + z)
r085
⊢ x + (y + z) = y + (z + x)
r084
⊢ x + y + z = x + (z + y)
r083
⊢ x + y + z = x + (y + z)
r082
⊢ x + x = 2 * x
r081
⊢ x + y = y + x
r080
⊢ x + 0 = x
r079
⊢ 0 + x = x
r078
⊢ (a + (-1 * x + (v * y + w * z)) = 0) ⇔ (x + (-v * y + -w * z) = a)
r077
⊢ (x + y = z) ⇔ (y + -1 * z = -x)
r076
⊢ (x + y = 0) ⇔ (y = -x)
r075
⊢ (-1 * x + y = z) ⇔ (x + -1 * y = -z)
r074
⊢ (-1 * x = -y) ⇔ (x = y)
r073
⊢ (x = -y + z) ⇔ (z + -1 * x = y)
r072
⊢ (x = y + z) ⇔ (z + -1 * x = -y)
r071
⊢ (x = y + z) ⇔ (y + (-1 * x + z) = 0)
r070
⊢ (x = y + z) ⇔ (y + (z + -1 * x) = 0)
r069
⊢ (x = y + z) ⇔ (x + (-1 * y + -1 * z) = 0)
r068
⊢ (x = -1 * y + z) ⇔ (y + (-1 * z + x) = 0)
r067
⊢ (x = y + -1 * z) ⇔ (x + (-1 * y + z) = 0)
r066
⊢ (x = y + z) ⇔ (x + -1 * z = y)
r065
⊢ (x = y) ⇔ (x + -1 * y = 0)
r064
⊢ ALL_DISTINCT [x; y] ⇔ y ≠ x
r063
⊢ ALL_DISTINCT [x; y] ⇔ x ≠ y
r062
⊢ ALL_DISTINCT [x; x] ⇔ F
r061
⊢ f⦇x ↦ f x⦈ = f
r060
⊢ ¬p ∧ ¬q ⇔ ¬(q ∨ p)
r059
⊢ p ∧ ¬q ⇔ ¬(q ∨ ¬p)
r058
⊢ ¬p ∧ q ⇔ ¬(¬q ∨ p)
r057
⊢ p ∧ q ⇔ ¬(¬q ∨ ¬p)
r056
⊢ ¬p ∧ ¬q ⇔ ¬(p ∨ q)
r055
⊢ p ∧ ¬q ⇔ ¬(¬p ∨ q)
r054
⊢ ¬p ∧ q ⇔ ¬(p ∨ ¬q)
r053
⊢ p ∧ q ⇔ ¬(¬p ∨ ¬q)
r052
⊢ F ∧ p ⇔ F
r051
⊢ p ∧ F ⇔ F
r050
⊢ T ∧ p ⇔ p
r049
⊢ p ∧ T ⇔ p
r048
⊢ p ∧ q ⇔ q ∧ p
r047
⊢ F ∨ p ⇔ p
r046
⊢ p ∨ F ⇔ p
r045
⊢ T ∨ p ⇔ T
r044
⊢ ¬p ∨ p ⇔ T
r043
⊢ p ∨ ¬p ⇔ T
r042
⊢ p ∨ T ⇔ T
r041
⊢ p ∨ q ⇔ q ∨ p
r040
⊢ ¬¬p ⇔ p
r039
⊢ ¬F ⇔ T
r038
⊢ ¬T ⇔ F
r037
⊢ (p ⇔ q) ⇒ r ⇔ r ∨ (q ⇔ ¬p)
r036
⊢ p ⇒ p ⇔ T
r035
⊢ F ⇒ p ⇔ T
r034
⊢ p ⇒ T ⇔ T
r033
⊢ T ⇒ p ⇔ p
r032
⊢ p ⇒ q ⇔ q ∨ ¬p
r031
⊢ p ⇒ q ⇔ ¬p ∨ q
r030
⊢ ¬p ⇒ q ⇔ q ∨ p
r029
⊢ ¬p ⇒ q ⇔ p ∨ q
r028
⊢ (if p then x = y else (z = y)) ⇔ (y = if p then x else z)
r027
⊢ (if p then x = y else (y = z)) ⇔ (y = if p then x else z)
r026
⊢ (if p then x = y else (x = z)) ⇔ (x = if p then y else z)
r025
⊢ (if p then x else if q then x else y) = if q ∨ p then x else y
r024
⊢ (if p then x else if q then x else y) = if p ∨ q then x else y
r023
⊢ (if p then x else if p then y else z) = if p then x else z
r022
⊢ (if p then if q then x else y else y) = if q ∧ p then x else y
r021
⊢ (if p then if q then x else y else y) = if p ∧ q then x else y
r020
⊢ (if p then if q then x else y else x) = if ¬q ∧ p then y else x
r019
⊢ (if p then if q then x else y else x) = if p ∧ ¬q then y else x
r018
⊢ (if ¬p then x else y) = if p then y else x
r017
⊢ (if p then ¬q else q) ⇔ (¬q ⇔ p)
r016
⊢ (if p then ¬q else q) ⇔ (p ⇔ ¬q)
r015
⊢ (if p then q else ¬q) ⇔ (q ⇔ p)
r014
⊢ (if p then q else ¬q) ⇔ (p ⇔ q)
r013
⊢ (if p then q else T) ⇔ q ∨ ¬p
r012
⊢ (if p then q else T) ⇔ ¬p ∨ q
r011
⊢ (if F then x else y) = y
r010
⊢ (if T then x else y) = x
r009
⊢ (¬p ⇎ q) ⇔ (p ⇔ q)
r008
⊢ (p ⇎ ¬q) ⇔ (p ⇔ q)
r007
⊢ (¬p ⇔ ¬q) ⇔ (p ⇔ q)
r006
⊢ (F ⇔ p) ⇔ ¬p
r005
⊢ (p ⇔ F) ⇔ ¬p
r004
⊢ (T ⇔ p) ⇔ p
r003
⊢ (p ⇔ T) ⇔ p
r002
⊢ (x = x) ⇔ T
r001
⊢ (x = y) ⇔ (y = x)
p009
⊢ dimindex (:8) ≤ dimindex (:32)
p008
⊢ FINITE 𝕌(:31)
p007
⊢ FINITE 𝕌(:30)
p006
⊢ FINITE 𝕌(:24)
p005
⊢ FINITE 𝕌(:16)
p004
⊢ FINITE 𝕌(:unit)
p003
⊢ 255 < dimword (:8)
p002
⊢ 1 < dimword (:α)
p001
⊢ 0 < dimword (:α)
NOT_NOT_ELIM
⊢ ∀p. ¬¬p ⇒ p
NOT_MEM_NIL
⊢ ∀x. ¬MEM x [] ⇔ T
NOT_MEM_CONS
⊢ ∀x h t. ¬MEM x (h::t) ⇔ x ≠ h ∧ ¬MEM x t
NOT_FALSE
⊢ ∀p. p ⇒ ¬p ⇒ F
NNF_NOT_NOT
⊢ ∀p q. (p ⇔ q) ⇒ (¬¬p ⇔ q)
NNF_DISJ
⊢ ∀p q r s. (¬p ⇔ r) ⇒ (¬q ⇔ s) ⇒ (¬(p ∨ q) ⇔ r ∧ s)
NNF_CONJ
⊢ ∀p q r s. (¬p ⇔ r) ⇒ (¬q ⇔ s) ⇒ (¬(p ∧ q) ⇔ r ∨ s)
NEG_IFF_2_2
⊢ ∀p q. (p ⇎ q) ⇒ (p ⇔ ¬q)
NEG_IFF_2_1
⊢ ∀p q. (p ⇔ ¬q) ⇒ (p ⇎ q)
NEG_IFF_1_2
⊢ ∀p q. (p ⇎ ¬q) ⇒ (q ⇔ p)
NEG_IFF_1_1
⊢ ∀p q. (q ⇔ p) ⇒ (p ⇎ ¬q)
IMP_FALSE
⊢ ∀p. (¬p ⇒ F) ⇒ p
IMP_DISJ_2
⊢ ∀p q. (¬p ⇒ q) ⇒ p ∨ q
IMP_DISJ_1
⊢ ∀p q. (p ⇒ q) ⇒ ¬p ∨ q
F_OR
⊢ ∀p q. (F ∨ p ⇔ F ∨ q) ⇒ (p ⇔ q)
DISJ_ELIM_2
⊢ ∀p q r. (p ∨ q ⇒ r) ⇒ q ⇒ r
DISJ_ELIM_1
⊢ ∀p q r. (p ∨ q ⇒ r) ⇒ p ⇒ r
d028
⊢ ¬(if p then q else r) ∨ p ∨ r
d027
⊢ ¬(if p then q else r) ∨ ¬p ∨ q
d026
⊢ (if p then q else ¬r) ∨ p ∨ r
d025
⊢ (if p then ¬q else r) ∨ ¬p ∨ q
d024
⊢ (if p then q else r) ∨ p ∨ ¬r
d023
⊢ (if p then q else r) ∨ ¬p ∨ ¬q
d022
⊢ ¬p ∨ q ∨ ¬if p then q else r
d021
⊢ p ∨ q ∨ ¬if p then r else q
d020
⊢ ¬p ∨ ((if p then x else y) = x)
d019
⊢ p ∨ ((if p then x else y) = y)
d018
⊢ ¬p ∨ (x = if p then x else y)
d017
⊢ p ∨ (y = if p then x else y)
d016
⊢ p ∧ q ∨ ¬p ∨ ¬q
d015
⊢ p ∧ ¬q ∨ ¬p ∨ q
d014
⊢ ¬p ∧ q ∨ p ∨ ¬q
d013
⊢ ¬p ∧ ¬q ∨ p ∨ q
d012
⊢ p ∨ q ∨ (p ⇎ ¬q)
d011
⊢ p ∨ q ∨ (¬p ⇎ q)
d010
⊢ p ∨ ¬q ∨ (p ⇎ q)
d009
⊢ ¬p ∨ q ∨ (p ⇎ q)
d008
⊢ (p ⇎ ¬q) ∨ p ∨ q
d007
⊢ (¬p ⇎ q) ∨ p ∨ q
d006
⊢ (p ⇔ q) ∨ p ∨ q
d005
⊢ (p ⇔ q) ∨ ¬p ∨ ¬q
d004
⊢ (¬p ⇔ q) ∨ p ∨ ¬q
d003
⊢ (p ⇔ ¬q) ∨ ¬p ∨ q
d002
⊢ (p ⇎ q) ∨ p ∨ ¬q
d001
⊢ (p ⇎ q) ∨ ¬p ∨ q
CONJ_CONG
⊢ ∀p q r s. (p ⇔ q) ⇒ (r ⇔ s) ⇒ (p ∧ r ⇔ q ∧ s)
AND_T
⊢ ∀p. p ∧ T ⇔ p
AND_IMP_INTRO_SYM
⊢ ∀p q r. p ∧ q ⇒ r ⇔ p ⇒ q ⇒ r
ALL_DISTINCT_NIL
⊢ ALL_DISTINCT [] ⇔ T
ALL_DISTINCT_CONS
⊢ ∀h t. ALL_DISTINCT (h::t) ⇔ ¬MEM h t ∧ ALL_DISTINCT t