- TotOrder_imp_good_cmp
-
⊢ ∀cmp. TotOrd cmp ⇒ good_cmp cmp
- TotOrd_list_cmp
-
⊢ ∀c. TotOrd c ⇒ TotOrd (list_cmp c)
- TO_of_LinearOrder_LLEX
-
⊢ ∀R.
irreflexive R ⇒
(TO_of_LinearOrder (LLEX R) = list_cmp (TO_of_LinearOrder R))
- TO_inv_invert
-
⊢ ∀c. TotOrd c ⇒ (TO_inv c = CURRY (invert_comparison ∘ UNCURRY c))
- string_cmp_stringto
-
⊢ string_cmp = apto stringto
- string_cmp_good
-
⊢ good_cmp string_cmp
- string_cmp_def
-
⊢ string_cmp = list_cmp char_cmp
- string_cmp_antisym
-
⊢ ∀x y. (string_cmp x y = Equal) ⇔ (x = y)
- pair_cmp_lexTO
-
⊢ ∀R V. TotOrd R ∧ TotOrd V ⇒ (pair_cmp R V = R lexTO V)
- pair_cmp_good
-
⊢ ∀cmp1 cmp2. good_cmp cmp1 ∧ good_cmp cmp2 ⇒ good_cmp (pair_cmp cmp1 cmp2)
- pair_cmp_def
-
⊢ pair_cmp c1 c2 x y =
case c1 (FST x) (FST y) of
Less => Less
| Equal => c2 (SND x) (SND y)
| Greater => Greater
- pair_cmp_cong
-
⊢ ∀cmp1 cmp2 v1 v2 cmp1' cmp2' v1' v2'.
(v1 = v1') ∧ (v2 = v2') ∧
(∀a b c d. (v1' = (a,b)) ∧ (v2' = (c,d)) ⇒ (cmp1 a c = cmp1' a c)) ∧
(∀a b c d. (v1' = (a,b)) ∧ (v2' = (c,d)) ⇒ (cmp2 b d = cmp2' b d)) ⇒
(pair_cmp cmp1 cmp2 v1 v2 = pair_cmp cmp1' cmp2' v1' v2')
- pair_cmp_antisym
-
⊢ ∀cmp1 cmp2 x y.
(∀x y. (cmp1 x y = Equal) ⇔ (x = y)) ∧
(∀x y. (cmp2 x y = Equal) ⇔ (x = y)) ⇒
((pair_cmp cmp1 cmp2 x y = Equal) ⇔ (x = y))
- option_cmp_good
-
⊢ ∀cmp. good_cmp cmp ⇒ good_cmp (option_cmp cmp)
- option_cmp_def
-
⊢ (option_cmp c NONE NONE = Equal) ∧ (option_cmp c NONE (SOME v0) = Less) ∧
(option_cmp c (SOME v3) NONE = Greater) ∧
(option_cmp c (SOME v1) (SOME v2) = c v1 v2)
- option_cmp_cong
-
⊢ ∀cmp v1 v2 cmp' v1' v2'.
(v1 = v1') ∧ (v2 = v2') ∧
(∀x x'. (v1' = SOME x) ∧ (v2' = SOME x') ⇒ (cmp x x' = cmp' x x')) ⇒
(option_cmp cmp v1 v2 = option_cmp cmp' v1' v2')
- option_cmp_antisym
-
⊢ ∀cmp x y.
(∀x y. (cmp x y = Equal) ⇔ (x = y)) ⇒
((option_cmp cmp x y = Equal) ⇔ (x = y))
- option_cmp2_TO_inv
-
⊢ ∀c. option_cmp2 c = TO_inv (option_cmp (TO_inv c))
- option_cmp2_ind
-
⊢ ∀P.
(∀cmp. P cmp NONE NONE) ∧ (∀cmp x. P cmp NONE (SOME x)) ∧
(∀cmp x. P cmp (SOME x) NONE) ∧ (∀cmp x y. P cmp (SOME x) (SOME y)) ⇒
∀v v1 v2. P v v1 v2
- option_cmp2_good
-
⊢ ∀cmp. good_cmp cmp ⇒ good_cmp (option_cmp2 cmp)
- option_cmp2_def
-
⊢ (option_cmp2 cmp NONE NONE = Equal) ∧
(option_cmp2 cmp NONE (SOME x') = Greater) ∧
(option_cmp2 cmp (SOME x) NONE = Less) ∧
(option_cmp2 cmp (SOME x) (SOME y) = cmp x y)
- option_cmp2_cong
-
⊢ ∀cmp v1 v2 cmp' v1' v2'.
(v1 = v1') ∧ (v2 = v2') ∧
(∀x x'. (v1' = SOME x) ∧ (v2' = SOME x') ⇒ (cmp x x' = cmp' x x')) ⇒
(option_cmp2 cmp v1 v2 = option_cmp2 cmp' v1' v2')
- option_cmp2_antisym
-
⊢ ∀cmp x y.
(∀x y. (cmp x y = Equal) ⇔ (x = y)) ⇒
((option_cmp2 cmp x y = Equal) ⇔ (x = y))
- num_cmp_numOrd
-
⊢ num_cmp = numOrd
- num_cmp_good
-
⊢ good_cmp num_cmp
- num_cmp_def
-
⊢ ∀n1 n2.
num_cmp n1 n2 =
if n1 = n2 then Equal else if n1 < n2 then Less else Greater
- num_cmp_antisym
-
⊢ ∀x y. (num_cmp x y = Equal) ⇔ (x = y)
- list_cmp_ListOrd
-
⊢ ∀c. TotOrd c ⇒ (list_cmp c = ListOrd (TO c))
- list_cmp_good
-
⊢ ∀cmp. good_cmp cmp ⇒ good_cmp (list_cmp cmp)
- list_cmp_equal_list_rel
-
⊢ ∀cmp l1 l2.
(list_cmp cmp l1 l2 = Equal) ⇔ LIST_REL (λx y. cmp x y = Equal) l1 l2
- list_cmp_cong
-
⊢ ∀cmp l1 l2 cmp' l1' l2'.
(l1 = l1') ∧ (l2 = l2') ∧
(∀x x'. MEM x l1' ∧ MEM x' l2' ⇒ (cmp x x' = cmp' x x')) ⇒
(list_cmp cmp l1 l2 = list_cmp cmp' l1' l2')
- list_cmp_antisym
-
⊢ ∀cmp x y.
(∀x y. (cmp x y = Equal) ⇔ (x = y)) ⇒
((list_cmp cmp x y = Equal) ⇔ (x = y))
- good_cmp_trans
-
⊢ ∀cmp. good_cmp cmp ⇒ transitive (λ(k,v) (k',v'). cmp k k' = Less)
- good_cmp_thm
-
⊢ ∀cmp.
good_cmp cmp ⇔
(∀x. cmp x x = Equal) ∧
∀x y z.
((cmp x y = Greater) ⇔ (cmp y x = Less)) ∧
((cmp x y = Less) ∧ (cmp y z = Equal) ⇒ (cmp x z = Less)) ∧
((cmp x y = Less) ∧ (cmp y z = Less) ⇒ (cmp x z = Less))
- good_cmp_Less_trans
-
⊢ ∀cmp. good_cmp cmp ⇒ transitive (λk k'. cmp k k' = Less)
- good_cmp_Less_irrefl_trans
-
⊢ ∀cmp.
good_cmp cmp ⇒
irreflexive (λk k'. cmp k k' = Less) ∧
transitive (λk k'. cmp k k' = Less)
- cmp_thms
-
⊢ (Less ≠ Equal ∧ Less ≠ Greater ∧ Equal ≠ Greater) ∧
((∀v0 v1 v2. (case Less of Less => v0 | Equal => v1 | Greater => v2) = v0) ∧
(∀v0 v1 v2. (case Equal of Less => v0 | Equal => v1 | Greater => v2) = v1) ∧
∀v0 v1 v2. (case Greater of Less => v0 | Equal => v1 | Greater => v2) = v2) ∧
(∀a. (a = Less) ∨ (a = Equal) ∨ (a = Greater)) ∧
∀cmp.
good_cmp cmp ⇔
(∀x. cmp x x = Equal) ∧ (∀x y. (cmp x y = Equal) ⇒ (cmp y x = Equal)) ∧
(∀x y. (cmp x y = Greater) ⇔ (cmp y x = Less)) ∧
(∀x y z. (cmp x y = Equal) ∧ (cmp y z = Less) ⇒ (cmp x z = Less)) ∧
(∀x y z. (cmp x y = Less) ∧ (cmp y z = Equal) ⇒ (cmp x z = Less)) ∧
(∀x y z. (cmp x y = Equal) ∧ (cmp y z = Equal) ⇒ (cmp x z = Equal)) ∧
∀x y z. (cmp x y = Less) ∧ (cmp y z = Less) ⇒ (cmp x z = Less)
- char_cmp_good
-
⊢ good_cmp char_cmp
- char_cmp_def
-
⊢ ∀c1 c2. char_cmp c1 c2 = num_cmp (ORD c1) (ORD c2)
- char_cmp_charOrd
-
⊢ char_cmp = charOrd
- char_cmp_antisym
-
⊢ ∀x y. (char_cmp x y = Equal) ⇔ (x = y)
- bool_cmp_good
-
⊢ good_cmp bool_cmp
- bool_cmp_def
-
⊢ (bool_cmp T T = Equal) ∧ (bool_cmp F F = Equal) ∧ (bool_cmp T F = Greater) ∧
(bool_cmp F T = Less)
- bool_cmp_antisym
-
⊢ ∀x y. (bool_cmp x y = Equal) ⇔ (x ⇔ y)
- antisym_resp_equiv
-
⊢ ∀cmp f.
(∀x y. (cmp x y = Equal) ⇒ (x = y)) ⇒
resp_equiv cmp f ∧ ∀cmp2. good_cmp cmp2 ⇒ resp_equiv2 cmp cmp2 f