Theory "gcdset"

Parents     pred_set   gcd

Signature

Constant Type
gcdset :(num -> bool) -> num

Definitions

gcdset_def
⊢ ∀s.
      gcdset s =
      if (s = ∅) ∨ (s = {0}) then 0
      else
        MAX_SET
          ({n | n ≤ MIN_SET (s DELETE 0)} ∩ {d | ∀e. e ∈ s ⇒ divides d e})


Theorems

gcdset_INSERT
⊢ gcdset (x INSERT s) = gcd x (gcdset s)
gcdset_greatest
⊢ (∀e. e ∈ s ⇒ divides g e) ⇒ divides g (gcdset s)
gcdset_EMPTY
⊢ gcdset ∅ = 0
gcdset_divides
⊢ ∀e. e ∈ s ⇒ divides (gcdset s) e