Theory "ordNotationSemantics"

Parents     ordinal   ordinalNotation

Signature

Constant Type
ordModel :osyntax -> α ordinal

Definitions

ordModel_def
⊢ (∀n. ⟦End n⟧ = &n) ∧ ∀e c t. ⟦Plus e c t⟧ = ω ** ⟦e⟧ * &c + ⟦t⟧


Theorems

WF_ord_less
⊢ WF ord_less
tail_dominated
⊢ ⟦expt t⟧ < ⟦e⟧ ∧ is_ord e ∧ is_ord t ⇒ ⟦t⟧ < ω ** ⟦e⟧
osyntax_EQ_0
⊢ ∀a. is_ord a ⇒ ((⟦a⟧ = 0) ⇔ (a = End 0))
ordModel_lt_epsilon0
⊢ ∀a. ⟦a⟧ < ε₀
ordModel_BIJ
⊢ BIJ ordModel {n | is_ord n} {a | a < ε₀}
ordModel_11
⊢ is_ord n1 ∧ is_ord n2 ⇒ ((⟦n1⟧ = ⟦n2⟧) ⇔ (n1 = n2))
ord_mult_correct
⊢ ∀x y. is_ord x ∧ is_ord y ⇒ (⟦ord_mult x y⟧ = ⟦x⟧ * ⟦y⟧)
ord_less_models_ordlt
⊢ ∀x.
      is_ord x ⇒
      (∀y. oless x y ∧ is_ord y ⇒ ⟦x⟧ < ⟦y⟧) ∧
      (¬finp x ⇒ ⟦tail x⟧ < ω ** ⟦expt x⟧)
ord_less_modelled
⊢ ord_less x y ⇔ is_ord x ∧ is_ord y ∧ ⟦x⟧ < ⟦y⟧
ord_less_expt_monotone
⊢ ord_less x y ⇒ (expt x = expt y) ∨ ord_less (expt x) (expt y)
ord_add_correct
⊢ ∀x y. is_ord x ∧ is_ord y ⇒ (⟦ord_add x y⟧ = ⟦x⟧ + ⟦y⟧)
oless_x_End
⊢ oless x (End n) ⇔ ∃m. (x = End m) ∧ m < n
oless_total
⊢ ∀m n. oless m n ∨ oless n m ∨ (m = n)
oless_modelled
⊢ is_ord x ∧ is_ord y ⇒ (oless x y ⇔ ⟦x⟧ < ⟦y⟧)
oless_0a
⊢ oless (End 0) n ⇔ n ≠ End 0
oless_0
⊢ ∀n. oless n (End 0) ⇔ F
notation_exists
⊢ ∀a. a < ε₀ ⇒ ∃n. is_ord n ∧ (⟦n⟧ = a) ∧ (0 < a ⇒ (⟦expt n⟧ = olog a))
nat_times_omega
⊢ ∀e m. 0 < m ∧ 0 < e ⇒ (&m * ω ** e = ω ** e)
mvjar_theorem10
⊢ ∀n a b.
      is_ord a ∧ is_ord b ∧ n ≤ cf1 (expt a) (expt b) ⇒
      (⟦pmult a b n⟧ = ⟦a⟧ * ⟦b⟧)
mvjar_lemma5
⊢ padd a b (cf1 a b) = ord_add a b
mvjar_lemma4
⊢ ∀a n b. n ≤ cf1 a b ⇒ (cf1 a b = cf2 a b n)
mvjar_lemma3
⊢ ord_less d b ⇒ cf1 a b ≤ cf1 a d
model_expt
⊢ is_ord a ⇒ (⟦expt a⟧ = if a = End 0 then 0 else olog ⟦a⟧)
kexp_sum_times_nat
⊢ ∀c2 c t e.
      0 < c2 ∧ 0 < c ∧ t < ω ** e ⇒
      ((ω ** e * &c + t) * &c2 = ω ** e * &(c * c2) + t)
kexp_mult
⊢ ∀e2 e1 c t.
      0 < e2 ∧ t < ω ** e1 ∧ 0 < c ⇒
      ((ω ** e1 * &c + t) * ω ** e2 = ω ** (e1 + e2))
kexp_lt
⊢ e1 < e2 ⇒ ω ** e1 * &k < ω ** e2
is_ord_expt
⊢ is_ord e ⇒ is_ord (expt e)
better_pmult_def
⊢ pmult a (Plus be bc bt) n =
  if a = End 0 then End 0
  else
    (let m = cf2 (expt a) be n in Plus (padd (expt a) be m) bc (pmult a bt m))
better_ord_mult_def
⊢ ord_mult a (Plus be bc bt) =
  if a = End 0 then End 0 else Plus (ord_add (expt a) be) bc (ord_mult a bt)
addL_disappears
⊢ ∀e a. a < ω ** e ⇒ (a + ω ** e = ω ** e)
add_nat1_disappears_kexp
⊢ e ≠ 0 ∧ 0 < k ⇒ (&n + ω ** e * &k = ω ** e * &k)
add_nat1_disappears
⊢ ω ≤ a ⇒ (&n + a = a)
add_disappears_kexp
⊢ e ≠ 0 ∧ 0 < k ∧ a < ω ** e ⇒ (a + ω ** e * &k = ω ** e * &k)