| Type | Arity |
|---|---|
| word_ptree | 2 |
| Constant | Type |
| ADD_LISTs | :α ptree -> (string # α) list -> α ptree |
| ADD_LISTw | :(α, β) word_ptree -> (α word # β) list -> (α, β) word_ptree |
| ADDs | :α ptree -> string # α -> α ptree |
| ADDw | :(α, β) word_ptree -> α word # β -> (α, β) word_ptree |
| DEPTHw | :(α, β) word_ptree -> num |
| EVERY_LEAFw | :(α word -> β -> bool) -> (α, β) word_ptree -> bool |
| EXISTS_LEAFw | :(α word -> β -> bool) -> (α, β) word_ptree -> bool |
| FINDs | :α ptree -> string -> α |
| FINDw | :(β, α) word_ptree -> β word -> α |
| INSERT_PTREEs | :string -> unit ptree -> unit ptree |
| INSERT_PTREEw | :α word -> (α, unit) word_ptree -> (α, unit) word_ptree |
| IN_PTREEs | :string -> unit ptree -> bool |
| IN_PTREEw | :α word -> (α, unit) word_ptree -> bool |
| KEYSs | :α ptree -> string list |
| KEYSw | :(α, β) word_ptree -> α word list |
| PEEKs | :α ptree -> string -> α option |
| PEEKw | :(α, β) word_ptree -> α word -> β option |
| PTREE_OF_STRINGSET | :unit ptree -> (string -> bool) -> unit ptree |
| PTREE_OF_WORDSET | :(α, unit) word_ptree -> (α word -> bool) -> (α, unit) word_ptree |
| REMOVEs | :α ptree -> string -> α ptree |
| REMOVEw | :(α, β) word_ptree -> α word -> (α, β) word_ptree |
| SIZEw | :(α, β) word_ptree -> num |
| SKIP1 | :string -> string |
| SOME_PTREE | :β ptree -> (α, β) word_ptree |
| STRINGSET_OF_PTREE | :unit ptree -> string -> bool |
| THE_PTREE | :(β, α) word_ptree -> α ptree |
| TRANSFORMw | :(α -> β) -> (γ, α) word_ptree -> (γ, β) word_ptree |
| TRAVERSEs | :α ptree -> string list |
| TRAVERSEw | :(α, β) word_ptree -> α word list |
| UNION_PTREEw | :(β, unit) word_ptree -> (γ, unit) word_ptree -> (α, unit) word_ptree |
| WORDSET_OF_PTREE | :(α, unit) word_ptree -> α word -> bool |
| WordEmpty | :(α, β) word_ptree |
| Word_ptree | :(α -> unit) -> β ptree -> (α, β) word_ptree |
| num_to_string | :num -> string |
| string_to_num | :string -> num |
| word_ptree_CASE | :(α, β) word_ptree -> ((α -> unit) -> β ptree -> γ) -> γ |
| word_ptree_size | :(α -> num) -> (β -> num) -> (α, β) word_ptree -> num |
⊢ ∀t. WORDSET_OF_PTREE t = LIST_TO_SET (TRAVERSEw t)
⊢ +{}+ = SOME_PTREE -{}-
⊢ ∃rep.
TYPE_DEFINITION
(λa0'.
∀ $var$('word_ptree').
(∀a0'.
(∃a0 a1.
a0' =
(λa0 a1.
ind_type$CONSTR 0 (a0,a1)
(λn. ind_type$BOTTOM)) a0 a1) ⇒
$var$('word_ptree') a0') ⇒
$var$('word_ptree') a0') rep
⊢ ∀f f1 a0 a1. word_ptree_size f f1 (Word_ptree a0 a1) = 1 + ptree_size f1 a1
⊢ ∀a0 a1 f. word_ptree_CASE (Word_ptree a0 a1) f = f a0 a1
⊢ ∀t1 t2.
t1 UNION_PTREEw t2 = SOME_PTREE (THE_PTREE t1 UNION_PTREE THE_PTREE t2)
⊢ ∀t. TRAVERSEw t = MAP n2w (TRAVERSE (THE_PTREE t))
⊢ ∀t. TRAVERSEs t = MAP num_to_string (TRAVERSE t)
⊢ ∀f t. TRANSFORMw f t = SOME_PTREE (TRANSFORM f (THE_PTREE t))
⊢ ∀a t. THE_PTREE (Word_ptree a t) = t
⊢ ∀t. STRINGSET_OF_PTREE t = LIST_TO_SET (TRAVERSEs t)
⊢ ∀s. string_to_num s = s2n 256 ORD (STRING #"\^A" s)
⊢ ∀t. SOME_PTREE t = Word_ptree (K ()) t
⊢ ∀c s. SKIP1 (STRING c s) = s
⊢ ∀t. SIZEw t = SIZE (THE_PTREE t)
⊢ ∀t w. t \\ w = SOME_PTREE (THE_PTREE t \\ w2n w)
⊢ ∀t w. t \\ w = t \\ string_to_num w
⊢ ∀t s. t |++ s = SOME_PTREE (THE_PTREE t |++ IMAGE w2n s)
⊢ ∀t s. t |++ s = t |++ IMAGE string_to_num s
⊢ ∀t w. t ' w = THE_PTREE t ' (w2n w)
⊢ ∀t w. t ' w = t ' (string_to_num w)
⊢ ∀n. num_to_string n = SKIP1 (n2s 256 CHR n)
⊢ ∀t. KEYSw t = QSORT $<+ (TRAVERSEw t)
⊢ ∀t. KEYSs t = QSORT $< (TRAVERSEs t)
⊢ ∀w t. w INSERT_PTREEw t = SOME_PTREE (w2n w INSERT_PTREE THE_PTREE t)
⊢ ∀w t. w INSERT_PTREEs t = string_to_num w INSERT_PTREE t
⊢ ∀w t. w IN_PTREEw t ⇔ w2n w IN_PTREE THE_PTREE t
⊢ ∀w t. w IN_PTREEs t ⇔ string_to_num w IN_PTREE t
⊢ ∀t w. FINDw t w = THE (t ' w)
⊢ ∀t w. FINDs t w = THE (t ' w)
⊢ ∀P t. EXISTS_LEAFw P t ⇔ EXISTS_LEAF (λk d. P (n2w k) d) (THE_PTREE t)
⊢ ∀P t. EVERY_LEAFw P t ⇔ EVERY_LEAF (λk d. P (n2w k) d) (THE_PTREE t)
⊢ ∀t. DEPTHw t = DEPTH (THE_PTREE t)
⊢ ∀t w d. t |+ (w,d) = SOME_PTREE (THE_PTREE t |+ (w2n w,d))
⊢ ∀t w d. t |+ (w,d) = t |+ (string_to_num w,d)
⊢ $|++ = FOLDL $|+
⊢ $|++ = FOLDL $|+
⊢ ∀ww. ∃f p. ww = Word_ptree f p
⊢ ∀P. (∀f p. P (Word_ptree f p)) ⇒ ∀w. P w
⊢ (word_ptree_CASE x f = v) ⇔ ∃f' p. (x = Word_ptree f' p) ∧ (f f' p = v)
⊢ ∀M M' f.
(M = M') ∧ (∀a0 a1. (M' = Word_ptree a0 a1) ⇒ (f a0 a1 = f' a0 a1)) ⇒
(word_ptree_CASE M f = word_ptree_CASE M' f')
⊢ ∀f. ∃fn. ∀a0 a1. fn (Word_ptree a0 a1) = f a0 a1
⊢ ∀a0 a1 a0' a1'.
(Word_ptree a0 a1 = Word_ptree a0' a1') ⇔ (a0 = a0') ∧ (a1 = a1')
⊢ ∀t. THE_PTREE (SOME_PTREE t) = t
⊢ ∀n.
n ∈ IMAGE string_to_num 𝕌(:string) ⇒
(string_to_num (num_to_string n) = n)
⊢ ∀s t. (string_to_num s = string_to_num t) ⇔ (s = t)
⊢ ∀l1 l2. (REVERSE l1 = REVERSE l2) ⇔ (l1 = l2)
⊢ ∀s. num_to_string (string_to_num s) = s
⊢ ∀f l1 l2.
(∀x y. (f x = f y) ⇔ (x = y)) ⇒ ((MAP f l1 = MAP f l2) ⇔ (l1 = l2))
⊢ ∀b l. 1 < b ⇒ l2n b l < b ** LENGTH l
⊢ ∀b l1 l2. l2n b (l1 ++ l2) = l2n b l1 + b ** LENGTH l1 * l2n b l2
⊢ ∀b l1 l2.
1 < b ∧ EVERY ($> b) l1 ∧ EVERY ($> b) l2 ⇒
((l2n b (l1 ++ [1]) = l2n b (l2 ++ [1])) ⇔ (l1 = l2))
⊢ ∀n.
(n = 1) ∨ 256 ≤ n ∧ (n DIV 256 ** LOG 256 n = 1) ⇔
n ∈ IMAGE string_to_num 𝕌(:string)
⊢ ∀l. EVERY ($> 256) (MAP ORD l)
⊢ DATATYPE (word_ptree Word_ptree)
⊢ ∀w v t. t |+ (w,v) = t |+ (w,())
⊢ ∀w v t. t |+ (w,v) = t |+ (w,())