Theory "poly"

Parents     lim

Signature

Constant Type
## :real -> real list -> real list
degree :real list -> num
diff :real list -> real list
normalize :real list -> real list
poly :real list -> real -> real
poly_add :real list -> real list -> real list
poly_diff_aux :num -> real list -> real list
poly_divides :real list -> real list -> bool
poly_exp :real list -> num -> real list
poly_mul :real list -> real list -> real list
poly_neg :real list -> real list
poly_order :real -> real list -> num
rsquarefree :real list -> bool

Definitions

rsquarefree
⊢ ∀p.
      rsquarefree p ⇔
      poly p ≠ poly [] ∧ ∀a. (poly_order a p = 0) ∨ (poly_order a p = 1)
poly_order
⊢ ∀a p.
      poly_order a p =
      @n.
          [-a; 1] poly_exp n poly_divides p ∧
          ¬([-a; 1] poly_exp SUC n poly_divides p)
poly_neg_def
⊢ $~ = $## (-1)
poly_mul_def
⊢ (∀l2. [] * l2 = []) ∧
  ∀h t l2. (h::t) * l2 = if t = [] then h ## l2 else h ## l2 + (0::t * l2)
poly_exp_def
⊢ (∀p. p poly_exp 0 = [1]) ∧ ∀p n. p poly_exp SUC n = p * p poly_exp n
poly_divides
⊢ ∀p1 p2. p1 poly_divides p2 ⇔ ∃q. poly p2 = poly (p1 * q)
poly_diff_def
⊢ ∀l. diff l = if l = [] then [] else poly_diff_aux 1 (TL l)
poly_diff_aux_def
⊢ (∀n. poly_diff_aux n [] = []) ∧
  ∀n h t. poly_diff_aux n (h::t) = &n * h::poly_diff_aux (SUC n) t
poly_def
⊢ (∀x. poly [] x = 0) ∧ ∀h t x. poly (h::t) x = h + x * poly t x
poly_cmul_def
⊢ (∀c. c ## [] = []) ∧ ∀c h t. c ## (h::t) = c * h::c ## t
poly_add_def
⊢ (∀l2. [] + l2 = l2) ∧
  ∀h t l2. (h::t) + l2 = if l2 = [] then h::t else h + HD l2::t + TL l2
normalize
⊢ (normalize [] = []) ∧
  ∀h t.
      normalize (h::t) =
      if normalize t = [] then if h = 0 then [] else [h] else h::normalize t
degree
⊢ ∀p. degree p = PRE (LENGTH (normalize p))


Theorems

RSQUAREFREE_ROOTS
⊢ ∀p. rsquarefree p ⇔ ∀a. ¬((poly p a = 0) ∧ (poly (diff p) a = 0))
RSQUAREFREE_DECOMP
⊢ ∀p a.
      rsquarefree p ∧ (poly p a = 0) ⇒
      ∃q. (poly p = poly ([-a; 1] * q)) ∧ poly q a ≠ 0
POLY_ZERO_LEMMA
⊢ ∀h t. (poly (h::t) = poly []) ⇒ (h = 0) ∧ (poly t = poly [])
POLY_ZERO
⊢ ∀p. (poly p = poly []) ⇔ EVERY (λc. c = 0) p
POLY_SQUAREFREE_DECOMP_ORDER
⊢ ∀p q d e r s.
      poly (diff p) ≠ poly [] ∧ (poly p = poly (q * d)) ∧
      (poly (diff p) = poly (e * d)) ∧ (poly d = poly (r * p + s * diff p)) ⇒
      ∀a. poly_order a q = if poly_order a p = 0 then 0 else 1
POLY_SQUAREFREE_DECOMP
⊢ ∀p q d e r s.
      poly (diff p) ≠ poly [] ∧ (poly p = poly (q * d)) ∧
      (poly (diff p) = poly (e * d)) ∧ (poly d = poly (r * p + s * diff p)) ⇒
      rsquarefree q ∧ ∀a. (poly q a = 0) ⇔ (poly p a = 0)
POLY_ROOTS_INDEX_LENGTH
⊢ ∀p. poly p ≠ poly [] ⇒ ∃i. ∀x. (poly p x = 0) ⇒ ∃n. n ≤ LENGTH p ∧ (x = i n)
POLY_ROOTS_INDEX_LEMMA
⊢ ∀n p.
      poly p ≠ poly [] ∧ (LENGTH p = n) ⇒
      ∃i. ∀x. (poly p x = 0) ⇒ ∃m. m ≤ n ∧ (x = i m)
POLY_ROOTS_FINITE_SET
⊢ ∀p. poly p ≠ poly [] ⇒ FINITE {x | poly p x = 0}
POLY_ROOTS_FINITE_LEMMA
⊢ ∀p. poly p ≠ poly [] ⇒ ∃N i. ∀x. (poly p x = 0) ⇒ ∃n. n < N ∧ (x = i n)
POLY_ROOTS_FINITE
⊢ ∀p. poly p ≠ poly [] ⇔ ∃N i. ∀x. (poly p x = 0) ⇒ ∃n. n < N ∧ (x = i n)
POLY_PRIMES
⊢ ∀a p q.
      [a; 1] poly_divides p * q ⇔
      [a; 1] poly_divides p ∨ [a; 1] poly_divides q
POLY_PRIME_EQ_0
⊢ ∀a. poly [a; 1] ≠ poly []
POLY_ORDER_EXISTS
⊢ ∀a d p.
      (LENGTH p = d) ∧ poly p ≠ poly [] ⇒
      ∃n.
          [-a; 1] poly_exp n poly_divides p ∧
          ¬([-a; 1] poly_exp SUC n poly_divides p)
POLY_ORDER
⊢ ∀p a.
      poly p ≠ poly [] ⇒
      ∃!n.
          [-a; 1] poly_exp n poly_divides p ∧
          ¬([-a; 1] poly_exp SUC n poly_divides p)
POLY_NORMALIZE
⊢ ∀p. poly (normalize p) = poly p
POLY_NEG_CLAUSES
⊢ (¬[] = []) ∧ (¬(h::t) = -h::¬t)
POLY_NEG
⊢ ∀p x. poly (¬p) x = -poly p x
POLY_MVT
⊢ ∀p a b.
      a < b ⇒
      ∃x. a < x ∧ x < b ∧ (poly p b − poly p a = (b − a) * poly (diff p) x)
POLY_MUL_LCANCEL
⊢ ∀p q r.
      (poly (p * q) = poly (p * r)) ⇔ (poly p = poly []) ∨ (poly q = poly r)
POLY_MUL_CLAUSES
⊢ ([] * p2 = []) ∧ ([h1] * p2 = h1 ## p2) ∧
  ((h1::k1::t1) * p2 = h1 ## p2 + (0::(k1::t1) * p2))
POLY_MUL_ASSOC
⊢ ∀p q r. poly (p * (q * r)) = poly (p * q * r)
POLY_MUL
⊢ ∀x p1 p2. poly (p1 * p2) x = poly p1 x * poly p2 x
POLY_MONO
⊢ ∀x k p. abs x ≤ k ⇒ abs (poly p x) ≤ poly (MAP abs p) k
POLY_LINEAR_REM
⊢ ∀t h. ∃q r. h::t = [r] + [-a; 1] * q
POLY_LINEAR_DIVIDES
⊢ ∀a p. (poly p a = 0) ⇔ (p = []) ∨ ∃q. p = [-a; 1] * q
POLY_LENGTH_MUL
⊢ ∀q. LENGTH ([-a; 1] * q) = SUC (LENGTH q)
POLY_IVT_POS
⊢ ∀p a b.
      a < b ∧ poly p a < 0 ∧ poly p b > 0 ⇒ ∃x. a < x ∧ x < b ∧ (poly p x = 0)
POLY_IVT_NEG
⊢ ∀p a b.
      a < b ∧ poly p a > 0 ∧ poly p b < 0 ⇒ ∃x. a < x ∧ x < b ∧ (poly p x = 0)
POLY_EXP_PRIME_EQ_0
⊢ ∀a n. poly ([a; 1] poly_exp n) ≠ poly []
POLY_EXP_EQ_0
⊢ ∀p n. (poly (p poly_exp n) = poly []) ⇔ (poly p = poly []) ∧ n ≠ 0
POLY_EXP_DIVIDES
⊢ ∀p q m n. p poly_exp n poly_divides q ∧ m ≤ n ⇒ p poly_exp m poly_divides q
POLY_EXP_ADD
⊢ ∀d n p. poly (p poly_exp (n + d)) = poly (p poly_exp n * p poly_exp d)
POLY_EXP
⊢ ∀p n x. poly (p poly_exp n) x = poly p x pow n
POLY_ENTIRE_LEMMA
⊢ ∀p q. poly p ≠ poly [] ∧ poly q ≠ poly [] ⇒ poly (p * q) ≠ poly []
POLY_ENTIRE
⊢ ∀p q. (poly (p * q) = poly []) ⇔ (poly p = poly []) ∨ (poly q = poly [])
POLY_DIVIDES_ZERO
⊢ ∀p q. (poly p = poly []) ⇒ q poly_divides p
POLY_DIVIDES_TRANS
⊢ ∀p q r. p poly_divides q ∧ q poly_divides r ⇒ p poly_divides r
POLY_DIVIDES_SUB2
⊢ ∀p q r. p poly_divides r ∧ p poly_divides q + r ⇒ p poly_divides q
POLY_DIVIDES_SUB
⊢ ∀p q r. p poly_divides q ∧ p poly_divides q + r ⇒ p poly_divides r
POLY_DIVIDES_REFL
⊢ ∀p. p poly_divides p
POLY_DIVIDES_EXP
⊢ ∀p m n. m ≤ n ⇒ p poly_exp m poly_divides p poly_exp n
POLY_DIVIDES_ADD
⊢ ∀p q r. p poly_divides q ∧ p poly_divides r ⇒ p poly_divides q + r
POLY_DIFFERENTIABLE
⊢ ∀l x. (λx. poly l x) differentiable x
POLY_DIFF_ZERO
⊢ ∀p. (poly p = poly []) ⇒ (poly (diff p) = poly [])
POLY_DIFF_WELLDEF
⊢ ∀p q. (poly p = poly q) ⇒ (poly (diff p) = poly (diff q))
POLY_DIFF_NEG
⊢ ∀p. poly (diff (¬p)) = poly (¬diff p)
POLY_DIFF_MUL_LEMMA
⊢ ∀t h. poly (diff (h::t)) = poly ((0::diff t) + t)
POLY_DIFF_MUL
⊢ ∀p1 p2. poly (diff (p1 * p2)) = poly (p1 * diff p2 + diff p1 * p2)
POLY_DIFF_LEMMA
⊢ ∀l n x.
      ((λx. x pow SUC n * poly l x) diffl
       (x pow n * poly (poly_diff_aux (SUC n) l) x)) x
POLY_DIFF_ISZERO
⊢ ∀p. (poly (diff p) = poly []) ⇒ ∃h. poly p = poly [h]
POLY_DIFF_EXP_PRIME
⊢ ∀n a.
      poly (diff ([-a; 1] poly_exp SUC n)) =
      poly (&SUC n ## [-a; 1] poly_exp n)
POLY_DIFF_EXP
⊢ ∀p n.
      poly (diff (p poly_exp SUC n)) = poly (&SUC n ## p poly_exp n * diff p)
POLY_DIFF_CMUL
⊢ ∀p c. poly (diff (c ## p)) = poly (c ## diff p)
POLY_DIFF_CLAUSES
⊢ (diff [] = []) ∧ (diff [c] = []) ∧ (diff (h::t) = poly_diff_aux 1 t)
POLY_DIFF_AUX_NEG
⊢ ∀p n. poly (poly_diff_aux n (¬p)) = poly (¬poly_diff_aux n p)
POLY_DIFF_AUX_MUL_LEMMA
⊢ ∀p n. poly (poly_diff_aux (SUC n) p) = poly (poly_diff_aux n p + p)
POLY_DIFF_AUX_ISZERO
⊢ ∀p n. EVERY (λc. c = 0) (poly_diff_aux (SUC n) p) ⇔ EVERY (λc. c = 0) p
POLY_DIFF_AUX_CMUL
⊢ ∀p c n. poly (poly_diff_aux n (c ## p)) = poly (c ## poly_diff_aux n p)
POLY_DIFF_AUX_ADD
⊢ ∀p1 p2 n.
      poly (poly_diff_aux n (p1 + p2)) =
      poly (poly_diff_aux n p1 + poly_diff_aux n p2)
POLY_DIFF_ADD
⊢ ∀p1 p2. poly (diff (p1 + p2)) = poly (diff p1 + diff p2)
POLY_DIFF
⊢ ∀l x. ((λx. poly l x) diffl poly (diff l) x) x
POLY_CONT
⊢ ∀l x. (λx. poly l x) contl x
POLY_CMUL_CLAUSES
⊢ (c ## [] = []) ∧ (c ## (h::t) = c * h::c ## t)
POLY_CMUL
⊢ ∀p c x. poly (c ## p) x = c * poly p x
POLY_ADD_RZERO
⊢ ∀p. poly (p + []) = poly p
POLY_ADD_CLAUSES
⊢ ([] + p2 = p2) ∧ (p1 + [] = p1) ∧ ((h1::t1) + (h2::t2) = h1 + h2::t1 + t2)
POLY_ADD
⊢ ∀p1 p2 x. poly (p1 + p2) x = poly p1 x + poly p2 x
ORDER_UNIQUE
⊢ ∀p a n.
      poly p ≠ poly [] ∧ [-a; 1] poly_exp n poly_divides p ∧
      ¬([-a; 1] poly_exp SUC n poly_divides p) ⇒
      (n = poly_order a p)
ORDER_THM
⊢ ∀p a.
      poly p ≠ poly [] ⇒
      [-a; 1] poly_exp poly_order a p poly_divides p ∧
      ¬([-a; 1] poly_exp SUC (poly_order a p) poly_divides p)
ORDER_ROOT
⊢ ∀p a. (poly p a = 0) ⇔ (poly p = poly []) ∨ poly_order a p ≠ 0
ORDER_POLY
⊢ ∀p q a. (poly p = poly q) ⇒ (poly_order a p = poly_order a q)
ORDER_MUL
⊢ ∀a p q.
      poly (p * q) ≠ poly [] ⇒
      (poly_order a (p * q) = poly_order a p + poly_order a q)
ORDER_DIVIDES
⊢ ∀p a n.
      [-a; 1] poly_exp n poly_divides p ⇔
      (poly p = poly []) ∨ n ≤ poly_order a p
ORDER_DIFF
⊢ ∀p a.
      poly (diff p) ≠ poly [] ∧ poly_order a p ≠ 0 ⇒
      (poly_order a p = SUC (poly_order a (diff p)))
ORDER_DECOMP
⊢ ∀p a.
      poly p ≠ poly [] ⇒
      ∃q.
          (poly p = poly ([-a; 1] poly_exp poly_order a p * q)) ∧
          ¬([-a; 1] poly_divides q)
ORDER
⊢ ∀p a n.
      [-a; 1] poly_exp n poly_divides p ∧
      ¬([-a; 1] poly_exp SUC n poly_divides p) ⇔
      (n = poly_order a p) ∧ poly p ≠ poly []
FINITE_LEMMA
⊢ ∀i N P. (∀x. P x ⇒ ∃n. n < N ∧ (x = i n)) ⇒ ∃a. ∀x. P x ⇒ x < a
DEGREE_ZERO
⊢ ∀p. (poly p = poly []) ⇒ (degree p = 0)