- th
-
⊢ (∀f g s. (∀x. x ∈ s ⇒ (f x = g x)) ⇒ (nproduct s (λi. f i) = nproduct s g)) ∧
(∀f g a b.
(∀i. a ≤ i ∧ i ≤ b ⇒ (f i = g i)) ⇒
(nproduct (a .. b) (λi. f i) = nproduct (a .. b) g)) ∧
∀f g p.
(∀x. p x ⇒ (f x = g x)) ⇒
(nproduct {y | p y} (λi. f i) = nproduct {y | p y} g)
- REAL_OF_NUM_NPRODUCT
-
⊢ ∀f s. FINITE s ⇒ (&nproduct s f = product s (λx. &f x))
- REAL_ADD_AC
-
⊢ (m + n = n + m) ∧ (m + n + p = m + (n + p)) ∧ (m + (n + p) = n + (m + p))
- PRODUCT_UNION
-
⊢ ∀f s t.
FINITE s ∧ FINITE t ∧ DISJOINT s t ⇒
(product (s ∪ t) f = product s f * product t f)
- PRODUCT_SUPPORT
-
⊢ ∀f s. product (support $* f s) f = product s f
- PRODUCT_SUPERSET
-
⊢ ∀f u v.
u ⊆ v ∧ (∀x. x ∈ v ∧ x ∉ u ⇒ (f x = 1)) ⇒ (product v f = product u f)
- PRODUCT_SING_NUMSEG
-
⊢ ∀f n. product (n .. n) f = f n
- PRODUCT_SING
-
⊢ ∀f x. product {x} f = f x
- PRODUCT_POS_LT_NUMSEG
-
⊢ ∀f m n. (∀x. m ≤ x ∧ x ≤ n ⇒ 0 < f x) ⇒ 0 < product (m .. n) f
- PRODUCT_POS_LT
-
⊢ ∀f s. FINITE s ∧ (∀x. x ∈ s ⇒ 0 < f x) ⇒ 0 < product s f
- PRODUCT_POS_LE_NUMSEG
-
⊢ ∀f m n. (∀x. m ≤ x ∧ x ≤ n ⇒ 0 ≤ f x) ⇒ 0 ≤ product (m .. n) f
- PRODUCT_POS_LE
-
⊢ ∀f s. FINITE s ∧ (∀x. x ∈ s ⇒ 0 ≤ f x) ⇒ 0 ≤ product s f
- PRODUCT_PAIR
-
⊢ ∀f m n.
product (2 * m .. 2 * n + 1) f =
product (m .. n) (λi. f (2 * i) * f (2 * i + 1))
- PRODUCT_ONE
-
⊢ ∀s. product s (λn. 1) = 1
- PRODUCT_OFFSET
-
⊢ ∀f m p. product (m + p .. n + p) f = product (m .. n) (λi. f (i + p))
- PRODUCT_NEG_NUMSEG_1
-
⊢ ∀f n. product (1 .. n) (λi. -f i) = -1 pow n * product (1 .. n) f
- PRODUCT_NEG_NUMSEG
-
⊢ ∀f m n.
product (m .. n) (λi. -f i) = -1 pow (n + 1 − m) * product (m .. n) f
- PRODUCT_NEG
-
⊢ ∀f s. FINITE s ⇒ (product s (λi. -f i) = -1 pow CARD s * product s f)
- PRODUCT_MUL_NUMSEG
-
⊢ ∀f g m n.
product (m .. n) (λx. f x * g x) =
product (m .. n) f * product (m .. n) g
- PRODUCT_MUL_GEN
-
⊢ ∀f g s.
FINITE {x | x ∈ s ∧ f x ≠ 1} ∧ FINITE {x | x ∈ s ∧ g x ≠ 1} ⇒
(product s (λx. f x * g x) = product s f * product s g)
- PRODUCT_MUL
-
⊢ ∀f g s. FINITE s ⇒ (product s (λx. f x * g x) = product s f * product s g)
- PRODUCT_LE_NUMSEG
-
⊢ ∀f m n.
(∀i. m ≤ i ∧ i ≤ n ⇒ 0 ≤ f i ∧ f i ≤ g i) ⇒
product (m .. n) f ≤ product (m .. n) g
- PRODUCT_LE_1
-
⊢ ∀f s. FINITE s ∧ (∀x. x ∈ s ⇒ 0 ≤ f x ∧ f x ≤ 1) ⇒ product s f ≤ 1
- PRODUCT_LE
-
⊢ ∀f s.
FINITE s ∧ (∀x. x ∈ s ⇒ 0 ≤ f x ∧ f x ≤ g x) ⇒ product s f ≤ product s g
- PRODUCT_INV
-
⊢ ∀f s. FINITE s ⇒ (product s (λx. (f x)⁻¹) = (product s f)⁻¹)
- PRODUCT_IMAGE
-
⊢ ∀f g s.
(∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)) ⇒
(product (IMAGE f s) g = product s (g ∘ f))
- PRODUCT_EQ_NUMSEG
-
⊢ ∀f g m n.
(∀i. m ≤ i ∧ i ≤ n ⇒ (f i = g i)) ⇒
(product (m .. n) f = product (m .. n) g)
- PRODUCT_EQ_1_NUMSEG
-
⊢ ∀f m n. (∀i. m ≤ i ∧ i ≤ n ⇒ (f i = 1)) ⇒ (product (m .. n) f = 1)
- PRODUCT_EQ_1
-
⊢ ∀f s. (∀x. x ∈ s ⇒ (f x = 1)) ⇒ (product s f = 1)
- PRODUCT_EQ_0_NUMSEG
-
⊢ ∀f m n. (product (m .. n) f = 0) ⇔ ∃x. m ≤ x ∧ x ≤ n ∧ (f x = 0)
- PRODUCT_EQ_0
-
⊢ ∀f s. FINITE s ⇒ ((product s f = 0) ⇔ ∃x. x ∈ s ∧ (f x = 0))
- PRODUCT_EQ
-
⊢ ∀f g s. (∀x. x ∈ s ⇒ (f x = g x)) ⇒ (product s f = product s g)
- PRODUCT_DIV_NUMSEG
-
⊢ ∀f g m n.
product (m .. n) (λx. f x / g x) =
product (m .. n) f / product (m .. n) g
- PRODUCT_DIV
-
⊢ ∀f g s. FINITE s ⇒ (product s (λx. f x / g x) = product s f / product s g)
- PRODUCT_DELTA
-
⊢ ∀s a. product s (λx. if x = a then b else 1) = if a ∈ s then b else 1
- PRODUCT_DELETE
-
⊢ ∀f s a. FINITE s ∧ a ∈ s ⇒ (f a * product (s DELETE a) f = product s f)
- PRODUCT_CONST_NUMSEG_1
-
⊢ ∀c n. product (1 .. n) (λx. c) = c pow n
- PRODUCT_CONST_NUMSEG
-
⊢ ∀c m n. product (m .. n) (λx. c) = c pow (n + 1 − m)
- PRODUCT_CONST
-
⊢ ∀c s. FINITE s ⇒ (product s (λx. c) = c pow CARD s)
- PRODUCT_CONG
-
⊢ (∀f g s. (∀x. x ∈ s ⇒ (f x = g x)) ⇒ (product s (λi. f i) = product s g)) ∧
(∀f g a b.
(∀i. a ≤ i ∧ i ≤ b ⇒ (f i = g i)) ⇒
(product (a .. b) (λi. f i) = product (a .. b) g)) ∧
∀f g p.
(∀x. p x ⇒ (f x = g x)) ⇒
(product {y | p y} (λi. f i) = product {y | p y} g)
- PRODUCT_CLOSED
-
⊢ ∀P f s.
P 1 ∧ (∀x y. P x ∧ P y ⇒ P (x * y)) ∧ (∀a. a ∈ s ⇒ P (f a)) ⇒
P (product s f)
- PRODUCT_CLAUSES_RIGHT
-
⊢ ∀f m n. 0 < n ∧ m ≤ n ⇒ (product (m .. n) f = product (m .. n − 1) f * f n)
- PRODUCT_CLAUSES_NUMSEG
-
⊢ (∀m. product (m .. 0) f = if m = 0 then f 0 else 1) ∧
∀m n.
product (m .. SUC n) f =
if m ≤ SUC n then product (m .. n) f * f (SUC n) else product (m .. n) f
- PRODUCT_CLAUSES_LEFT
-
⊢ ∀f m n. m ≤ n ⇒ (product (m .. n) f = f m * product (m + 1 .. n) f)
- PRODUCT_CLAUSES
-
⊢ (∀f. product ∅ f = 1) ∧
∀x f s.
FINITE s ⇒
(product (x INSERT s) f =
if x ∈ s then product s f else f x * product s f)
- PRODUCT_ADD_SPLIT
-
⊢ ∀f m n p.
m ≤ n + 1 ⇒
(product (m .. n + p) f =
product (m .. n) f * product (n + 1 .. n + p) f)
- PRODUCT_ABS
-
⊢ ∀f s. FINITE s ⇒ (product s (λx. abs (f x)) = abs (product s f))
- NPRODUCT_UNION
-
⊢ ∀f s t.
FINITE s ∧ FINITE t ∧ DISJOINT s t ⇒
(nproduct (s ∪ t) f = nproduct s f * nproduct t f)
- NPRODUCT_SUPPORT
-
⊢ ∀f s. nproduct (support $* f s) f = nproduct s f
- NPRODUCT_SUPERSET
-
⊢ ∀f u v.
u ⊆ v ∧ (∀x. x ∈ v ∧ x ∉ u ⇒ (f x = 1)) ⇒ (nproduct v f = nproduct u f)
- NPRODUCT_SING_NUMSEG
-
⊢ ∀f n. nproduct (n .. n) f = f n
- NPRODUCT_SING
-
⊢ ∀f x. nproduct {x} f = f x
- NPRODUCT_POS_LT_NUMSEG
-
⊢ ∀f m n. (∀x. m ≤ x ∧ x ≤ n ⇒ 0 < f x) ⇒ 0 < nproduct (m .. n) f
- NPRODUCT_POS_LT
-
⊢ ∀f s. FINITE s ∧ (∀x. x ∈ s ⇒ 0 < f x) ⇒ 0 < nproduct s f
- NPRODUCT_PAIR
-
⊢ ∀f m n.
nproduct (2 * m .. 2 * n + 1) f =
nproduct (m .. n) (λi. f (2 * i) * f (2 * i + 1))
- NPRODUCT_ONE
-
⊢ ∀s. nproduct s (λn. 1) = 1
- NPRODUCT_OFFSET
-
⊢ ∀f m p. nproduct (m + p .. n + p) f = nproduct (m .. n) (λi. f (i + p))
- NPRODUCT_MUL_NUMSEG
-
⊢ ∀f g m n.
nproduct (m .. n) (λx. f x * g x) =
nproduct (m .. n) f * nproduct (m .. n) g
- NPRODUCT_MUL_GEN
-
⊢ ∀f g s.
FINITE {x | x ∈ s ∧ f x ≠ 1} ∧ FINITE {x | x ∈ s ∧ g x ≠ 1} ⇒
(nproduct s (λx. f x * g x) = nproduct s f * nproduct s g)
- NPRODUCT_MUL
-
⊢ ∀f g s.
FINITE s ⇒ (nproduct s (λx. f x * g x) = nproduct s f * nproduct s g)
- NPRODUCT_LE_NUMSEG
-
⊢ ∀f m n.
(∀i. m ≤ i ∧ i ≤ n ⇒ 0 ≤ f i ∧ f i ≤ g i) ⇒
nproduct (m .. n) f ≤ nproduct (m .. n) g
- NPRODUCT_LE
-
⊢ ∀f s.
FINITE s ∧ (∀x. x ∈ s ⇒ 0 ≤ f x ∧ f x ≤ g x) ⇒
nproduct s f ≤ nproduct s g
- NPRODUCT_IMAGE
-
⊢ ∀f g s.
(∀x y. x ∈ s ∧ y ∈ s ∧ (f x = f y) ⇒ (x = y)) ⇒
(nproduct (IMAGE f s) g = nproduct s (g ∘ f))
- NPRODUCT_FACT
-
⊢ ∀n. nproduct (1 .. n) (λm. m) = FACT n
- NPRODUCT_EQ_NUMSEG
-
⊢ ∀f g m n.
(∀i. m ≤ i ∧ i ≤ n ⇒ (f i = g i)) ⇒
(nproduct (m .. n) f = nproduct (m .. n) g)
- NPRODUCT_EQ_1_NUMSEG
-
⊢ ∀f m n. (∀i. m ≤ i ∧ i ≤ n ⇒ (f i = 1)) ⇒ (nproduct (m .. n) f = 1)
- NPRODUCT_EQ_1
-
⊢ ∀f s. (∀x. x ∈ s ⇒ (f x = 1)) ⇒ (nproduct s f = 1)
- NPRODUCT_EQ_0_NUMSEG
-
⊢ ∀f m n. (nproduct (m .. n) f = 0) ⇔ ∃x. m ≤ x ∧ x ≤ n ∧ (f x = 0)
- NPRODUCT_EQ_0
-
⊢ ∀f s. FINITE s ⇒ ((nproduct s f = 0) ⇔ ∃x. x ∈ s ∧ (f x = 0))
- NPRODUCT_EQ
-
⊢ ∀f g s. (∀x. x ∈ s ⇒ (f x = g x)) ⇒ (nproduct s f = nproduct s g)
- NPRODUCT_DELTA
-
⊢ ∀s a. nproduct s (λx. if x = a then b else 1) = if a ∈ s then b else 1
- NPRODUCT_DELETE
-
⊢ ∀f s a. FINITE s ∧ a ∈ s ⇒ (f a * nproduct (s DELETE a) f = nproduct s f)
- NPRODUCT_CONST_NUMSEG_1
-
⊢ ∀c n. nproduct (1 .. n) (λx. c) = c ** n
- NPRODUCT_CONST_NUMSEG
-
⊢ ∀c m n. nproduct (m .. n) (λx. c) = c ** (n + 1 − m)
- NPRODUCT_CONST
-
⊢ ∀c s. FINITE s ⇒ (nproduct s (λx. c) = c ** CARD s)
- NPRODUCT_CLOSED
-
⊢ ∀P f s.
P 1 ∧ (∀x y. P x ∧ P y ⇒ P (x * y)) ∧ (∀a. a ∈ s ⇒ P (f a)) ⇒
P (nproduct s f)
- NPRODUCT_CLAUSES_RIGHT
-
⊢ ∀f m n.
0 < n ∧ m ≤ n ⇒ (nproduct (m .. n) f = nproduct (m .. n − 1) f * f n)
- NPRODUCT_CLAUSES_NUMSEG
-
⊢ (∀m. nproduct (m .. 0) f = if m = 0 then f 0 else 1) ∧
∀m n.
nproduct (m .. SUC n) f =
if m ≤ SUC n then nproduct (m .. n) f * f (SUC n)
else nproduct (m .. n) f
- NPRODUCT_CLAUSES_LEFT
-
⊢ ∀f m n. m ≤ n ⇒ (nproduct (m .. n) f = f m * nproduct (m + 1 .. n) f)
- NPRODUCT_CLAUSES
-
⊢ (∀f. nproduct ∅ f = 1) ∧
∀x f s.
FINITE s ⇒
(nproduct (x INSERT s) f =
if x ∈ s then nproduct s f else f x * nproduct s f)
- NPRODUCT_ADD_SPLIT
-
⊢ ∀f m n p.
m ≤ n + 1 ⇒
(nproduct (m .. n + p) f =
nproduct (m .. n) f * nproduct (n + 1 .. n + p) f)
- MULT_AC
-
⊢ (m * n = n * m) ∧ (m * n * p = m * (n * p)) ∧ (m * (n * p) = n * (m * p))