- varmap_nchotomy
-
⊢ ∀vv. (vv = Empty_vm) ∨ ∃a v v0. vv = Node_vm a v v0
- varmap_induction
-
⊢ ∀P. P Empty_vm ∧ (∀v v0. P v ∧ P v0 ⇒ ∀a. P (Node_vm a v v0)) ⇒ ∀v. P v
- varmap_find_ind
-
⊢ ∀P.
(∀x v1 v2. P End_idx (Node_vm x v1 v2)) ∧
(∀i1 x v1 v2. P i1 v2 ⇒ P (Right_idx i1) (Node_vm x v1 v2)) ∧
(∀i1 x v1 v2. P i1 v1 ⇒ P (Left_idx i1) (Node_vm x v1 v2)) ∧
(∀i. P i Empty_vm) ⇒
∀v v1. P v v1
- varmap_find_def
-
⊢ (∀x v2 v1. varmap_find End_idx (Node_vm x v1 v2) = x) ∧
(∀x v2 v1 i1.
varmap_find (Right_idx i1) (Node_vm x v1 v2) = varmap_find i1 v2) ∧
(∀x v2 v1 i1.
varmap_find (Left_idx i1) (Node_vm x v1 v2) = varmap_find i1 v1) ∧
∀i. varmap_find i Empty_vm = @x. T
- varmap_distinct
-
⊢ ∀a2 a1 a0. Empty_vm ≠ Node_vm a0 a1 a2
- varmap_case_eq
-
⊢ (varmap_CASE x v f = v') ⇔
(x = Empty_vm) ∧ (v = v') ∨
∃a v'' v0. (x = Node_vm a v'' v0) ∧ (f a v'' v0 = v')
- varmap_case_cong
-
⊢ ∀M M' v f.
(M = M') ∧ ((M' = Empty_vm) ⇒ (v = v')) ∧
(∀a0 a1 a2. (M' = Node_vm a0 a1 a2) ⇒ (f a0 a1 a2 = f' a0 a1 a2)) ⇒
(varmap_CASE M v f = varmap_CASE M' v' f')
- varmap_Axiom
-
⊢ ∀f0 f1.
∃fn.
(fn Empty_vm = f0) ∧
∀a0 a1 a2. fn (Node_vm a0 a1 a2) = f1 a0 a1 a2 (fn a1) (fn a2)
- varmap_11
-
⊢ ∀a0 a1 a2 a0' a1' a2'.
(Node_vm a0 a1 a2 = Node_vm a0' a1' a2') ⇔
(a0 = a0') ∧ (a1 = a1') ∧ (a2 = a2')
- index_nchotomy
-
⊢ ∀ii. (∃i. ii = Left_idx i) ∨ (∃i. ii = Right_idx i) ∨ (ii = End_idx)
- index_induction
-
⊢ ∀P.
(∀i. P i ⇒ P (Left_idx i)) ∧ (∀i. P i ⇒ P (Right_idx i)) ∧ P End_idx ⇒
∀i. P i
- index_distinct
-
⊢ (∀a' a. Left_idx a ≠ Right_idx a') ∧ (∀a. Left_idx a ≠ End_idx) ∧
∀a. Right_idx a ≠ End_idx
- index_compare_ind
-
⊢ ∀P.
P End_idx End_idx ∧ (∀v10. P End_idx (Left_idx v10)) ∧
(∀v11. P End_idx (Right_idx v11)) ∧ (∀v2. P (Left_idx v2) End_idx) ∧
(∀v3. P (Right_idx v3) End_idx) ∧
(∀n' m'. P n' m' ⇒ P (Left_idx n') (Left_idx m')) ∧
(∀n' m'. P (Left_idx n') (Right_idx m')) ∧
(∀n' m'. P n' m' ⇒ P (Right_idx n') (Right_idx m')) ∧
(∀n' m'. P (Right_idx n') (Left_idx m')) ⇒
∀v v1. P v v1
- index_compare_def
-
⊢ (index_compare End_idx End_idx = Equal) ∧
(∀v10. index_compare End_idx (Left_idx v10) = Less) ∧
(∀v11. index_compare End_idx (Right_idx v11) = Less) ∧
(∀v2. index_compare (Left_idx v2) End_idx = Greater) ∧
(∀v3. index_compare (Right_idx v3) End_idx = Greater) ∧
(∀n' m'. index_compare (Left_idx n') (Left_idx m') = index_compare n' m') ∧
(∀n' m'. index_compare (Left_idx n') (Right_idx m') = Less) ∧
(∀n' m'. index_compare (Right_idx n') (Right_idx m') = index_compare n' m') ∧
∀n' m'. index_compare (Right_idx n') (Left_idx m') = Greater
- index_case_eq
-
⊢ (index_CASE x f f1 v = v') ⇔
(∃i. (x = Left_idx i) ∧ (f i = v')) ∨
(∃i. (x = Right_idx i) ∧ (f1 i = v')) ∨ (x = End_idx) ∧ (v = v')
- index_case_cong
-
⊢ ∀M M' f f1 v.
(M = M') ∧ (∀a. (M' = Left_idx a) ⇒ (f a = f' a)) ∧
(∀a. (M' = Right_idx a) ⇒ (f1 a = f1' a)) ∧ ((M' = End_idx) ⇒ (v = v')) ⇒
(index_CASE M f f1 v = index_CASE M' f' f1' v')
- index_Axiom
-
⊢ ∀f0 f1 f2.
∃fn.
(∀a. fn (Left_idx a) = f0 a (fn a)) ∧
(∀a. fn (Right_idx a) = f1 a (fn a)) ∧ (fn End_idx = f2)
- index_11
-
⊢ (∀a a'. (Left_idx a = Left_idx a') ⇔ (a = a')) ∧
∀a a'. (Right_idx a = Right_idx a') ⇔ (a = a')
- datatype_varmap
-
⊢ DATATYPE (varmap Empty_vm Node_vm)
- datatype_index
-
⊢ DATATYPE (index Left_idx Right_idx End_idx)
- compare_list_index
-
⊢ ∀l1 l2. (list_cmp index_compare l1 l2 = Equal) ⇔ (l1 = l2)
- compare_index_equal
-
⊢ ∀i1 i2. (index_compare i1 i2 = Equal) ⇔ (i1 = i2)