- UNIV_RSP
-
⊢ ∀R abs rep. QUOTIENT R abs rep ⇒ $===> R $<=> 𝕌(:α) 𝕌(:α)
- UNIV_PRS
-
⊢ ∀R abs rep. QUOTIENT R abs rep ⇒ (𝕌(:β) = (rep --> I) 𝕌(:α))
- UNION_RSP
-
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀s1 s2 t1 t2.
$===> R $<=> s1 s2 ∧ $===> R $<=> t1 t2 ⇒
$===> R $<=> (s1 ∪ t1) (s2 ∪ t2)
- UNION_PRS
-
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀s t. s ∪ t = (rep --> I) ((abs --> I) s ∪ (abs --> I) t)
- SUBSETR_RSP
-
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀s1 s2 t1 t2.
$===> R $<=> s1 s2 ∧ $===> R $<=> t1 t2 ⇒
(SUBSETR R s1 t1 ⇔ SUBSETR R s2 t2)
- SUBSET_PRS
-
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀s t. s ⊆ t ⇔ SUBSETR R ((abs --> I) s) ((abs --> I) t)
- SET_REL_MP
-
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀s t x y. $===> R $<=> s t ∧ R x y ⇒ (x ∈ s ⇔ y ∈ t)
- SET_REL
-
⊢ ∀R s t. $===> R $<=> s t ⇔ ∀x y. R x y ⇒ (x ∈ s ⇔ y ∈ t)
- PSUBSETR_RSP
-
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀s1 s2 t1 t2.
$===> R $<=> s1 s2 ∧ $===> R $<=> t1 t2 ⇒
(PSUBSETR R s1 t1 ⇔ PSUBSETR R s2 t2)
- PSUBSET_PRS
-
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀s t. s ⊂ t ⇔ PSUBSETR R ((abs --> I) s) ((abs --> I) t)
- INTER_RSP
-
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀s1 s2 t1 t2.
$===> R $<=> s1 s2 ∧ $===> R $<=> t1 t2 ⇒
$===> R $<=> (s1 ∩ t1) (s2 ∩ t2)
- INTER_PRS
-
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀s t. s ∩ t = (rep --> I) ((abs --> I) s ∩ (abs --> I) t)
- INSERTR_RSP
-
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀x1 x2 s1 s2.
R x1 x2 ∧ $===> R $<=> s1 s2 ⇒
$===> R $<=> (INSERTR R x1 s1) (INSERTR R x2 s2)
- INSERT_PRS
-
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀s x. x INSERT s = (rep --> I) (INSERTR R (rep x) ((abs --> I) s))
- IN_SET_MAP
-
⊢ ∀f s x. x ∈ (f --> I) s ⇔ f x ∈ s
- IN_RSP
-
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀x1 x2 s1 s2. R x1 x2 ∧ $===> R $<=> s1 s2 ⇒ (x1 ∈ s1 ⇔ x2 ∈ s2)
- IN_PRS
-
⊢ ∀R abs rep. QUOTIENT R abs rep ⇒ ∀x s. x ∈ s ⇔ rep x ∈ (abs --> I) s
- IN_INSERTR
-
⊢ ∀R x s y. y ∈ INSERTR R x s ⇔ R y x ∨ y ∈ s
- IN_IMAGER
-
⊢ ∀R1 R2 y f s. y ∈ IMAGER R1 R2 f s ⇔ ∃x::respects R1. R2 y (f x) ∧ x ∈ s
- IN_GSPECR
-
⊢ ∀R1 R2 f v. v ∈ GSPECR R1 R2 f ⇔ ∃x::respects R1. $### R2 $<=> (v,T) (f x)
- IN_DELETER
-
⊢ ∀R s x y. y ∈ DELETER R s x ⇔ y ∈ s ∧ ¬R x y
- IMAGER_RSP
-
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀f1 f2 s1 s2.
$===> R1 R2 f1 f2 ∧ $===> R1 $<=> s1 s2 ⇒
$===> R2 $<=> (IMAGER R1 R2 f1 s1) (IMAGER R1 R2 f2 s2)
- IMAGE_PRS
-
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀f s.
IMAGE f s =
(rep2 --> I) (IMAGER R1 R2 ((abs1 --> rep2) f) ((abs1 --> I) s))
- GSPECR_RSP
-
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀f1 f2.
$===> R1 ($### R2 $<=>) f1 f2 ⇒
$===> R2 $<=> (GSPECR R1 R2 f1) (GSPECR R1 R2 f2)
- GSPEC_PRS
-
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀f. GSPEC f = (rep2 --> I) (GSPECR R1 R2 ((abs1 --> (rep2 ## I)) f))
- FINITER_RSP
-
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀s1 s2. $===> R $<=> s1 s2 ⇒ (FINITER R s1 ⇔ FINITER R s2)
- FINITER_INSERTR
-
⊢ ∀R (s::respects ($===> R $<=>)).
FINITER R s ⇒ ∀x::respects R. FINITER R (INSERTR R x s)
- FINITER_INDUCT
-
⊢ ∀R (P::respects ($===> ($===> R $<=>) $<=>)).
P ∅ ∧
(∀s::respects ($===> R $<=>).
FINITER R s ∧ P s ⇒ ∀e::respects R. e ∉ s ⇒ P (INSERTR R e s)) ⇒
∀s::respects ($===> R $<=>). FINITER R s ⇒ P s
- FINITER_EQ
-
⊢ ∀R s1 s2. $===> R $<=> s1 s2 ⇒ (FINITER R s1 ⇔ FINITER R s2)
- FINITER_EMPTY
-
⊢ ∀R. FINITER R ∅
- FINITE_PRS
-
⊢ ∀R abs rep. QUOTIENT R abs rep ⇒ ∀s. FINITE s ⇔ FINITER R ((abs --> I) s)
- EMPTY_RSP
-
⊢ ∀R abs rep. QUOTIENT R abs rep ⇒ $===> R $<=> ∅ ∅
- EMPTY_PRS
-
⊢ ∀R abs rep. QUOTIENT R abs rep ⇒ (∅ = (rep --> I) ∅)
- DISJOINTR_RSP
-
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀s1 s2 t1 t2.
$===> R $<=> s1 s2 ∧ $===> R $<=> t1 t2 ⇒
(DISJOINTR R s1 t1 ⇔ DISJOINTR R s2 t2)
- DISJOINT_PRS
-
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀s t. DISJOINT s t ⇔ DISJOINTR R ((abs --> I) s) ((abs --> I) t)
- DIFF_RSP
-
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀s1 s2 t1 t2.
$===> R $<=> s1 s2 ∧ $===> R $<=> t1 t2 ⇒
$===> R $<=> (s1 DIFF t1) (s2 DIFF t2)
- DIFF_PRS
-
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀s t. s DIFF t = (rep --> I) ((abs --> I) s DIFF (abs --> I) t)
- DELETER_RSP
-
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀s1 s2 x1 x2.
$===> R $<=> s1 s2 ∧ R x1 x2 ⇒
$===> R $<=> (DELETER R s1 x1) (DELETER R s2 x2)
- DELETE_PRS
-
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀s x. s DELETE x = (rep --> I) (DELETER R ((abs --> I) s) (rep x))
- ABSORPTIONR
-
⊢ ∀R (x::respects R) (s::respects ($===> R $<=>)).
x ∈ s ⇔ $===> R $<=> (INSERTR R x s) s