- semi_ring_TY_DEF
-
⊢ ∃rep.
TYPE_DEFINITION
(λa0'.
∀ $var$('semi_ring').
(∀a0'.
(∃a0 a1 a2 a3.
a0' =
(λa0 a1 a2 a3.
ind_type$CONSTR 0 (a0,a1,a2,a3)
(λn. ind_type$BOTTOM)) a0 a1 a2 a3) ⇒
$var$('semi_ring') a0') ⇒
$var$('semi_ring') a0') rep
- semi_ring_SRP_fupd
-
⊢ ∀f1 a a0 f f0.
semi_ring a a0 f f0 with SRP updated_by f1 = semi_ring a a0 (f1 f) f0
- semi_ring_SRP
-
⊢ ∀a a0 f f0. (semi_ring a a0 f f0).SRP = f
- semi_ring_SRM_fupd
-
⊢ ∀f1 a a0 f f0.
semi_ring a a0 f f0 with SRM updated_by f1 = semi_ring a a0 f (f1 f0)
- semi_ring_SRM
-
⊢ ∀a a0 f f0. (semi_ring a a0 f f0).SRM = f0
- semi_ring_SR1_fupd
-
⊢ ∀f1 a a0 f f0.
semi_ring a a0 f f0 with SR1 updated_by f1 = semi_ring a (f1 a0) f f0
- semi_ring_SR1
-
⊢ ∀a a0 f f0. (semi_ring a a0 f f0).SR1 = a0
- semi_ring_SR0_fupd
-
⊢ ∀f1 a a0 f f0.
semi_ring a a0 f f0 with SR0 updated_by f1 = semi_ring (f1 a) a0 f f0
- semi_ring_SR0
-
⊢ ∀a a0 f f0. (semi_ring a a0 f f0).SR0 = a
- semi_ring_size_def
-
⊢ ∀f a0 a1 a2 a3. semi_ring_size f (semi_ring a0 a1 a2 a3) = 1 + (f a0 + f a1)
- semi_ring_case_def
-
⊢ ∀a0 a1 a2 a3 f. semi_ring_CASE (semi_ring a0 a1 a2 a3) f = f a0 a1 a2 a3
- is_semi_ring_def
-
⊢ ∀r.
is_semi_ring r ⇔
(∀n m. r.SRP n m = r.SRP m n) ∧
(∀n m p. r.SRP n (r.SRP m p) = r.SRP (r.SRP n m) p) ∧
(∀n m. r.SRM n m = r.SRM m n) ∧
(∀n m p. r.SRM n (r.SRM m p) = r.SRM (r.SRM n m) p) ∧
(∀n. r.SRP r.SR0 n = n) ∧ (∀n. r.SRM r.SR1 n = n) ∧
(∀n. r.SRM r.SR0 n = r.SR0) ∧
∀n m p. r.SRM (r.SRP n m) p = r.SRP (r.SRM n p) (r.SRM m p)
- semi_ring_updates_eq_literal
-
⊢ ∀s a0 a f0 f.
s with <|SR0 := a0; SR1 := a; SRP := f0; SRM := f|> =
<|SR0 := a0; SR1 := a; SRP := f0; SRM := f|>
- semi_ring_nchotomy
-
⊢ ∀ss. ∃a a0 f f0. ss = semi_ring a a0 f f0
- semi_ring_literal_nchotomy
-
⊢ ∀s. ∃a0 a f0 f. s = <|SR0 := a0; SR1 := a; SRP := f0; SRM := f|>
- semi_ring_literal_11
-
⊢ ∀a01 a1 f01 f1 a02 a2 f02 f2.
(<|SR0 := a01; SR1 := a1; SRP := f01; SRM := f1|> =
<|SR0 := a02; SR1 := a2; SRP := f02; SRM := f2|>) ⇔
(a01 = a02) ∧ (a1 = a2) ∧ (f01 = f02) ∧ (f1 = f2)
- semi_ring_induction
-
⊢ ∀P. (∀a a0 f f0. P (semi_ring a a0 f f0)) ⇒ ∀s. P s
- semi_ring_fupdfupds_comp
-
⊢ ((∀g f. SR0_fupd f ∘ SR0_fupd g = SR0_fupd (f ∘ g)) ∧
∀h g f. SR0_fupd f ∘ SR0_fupd g ∘ h = SR0_fupd (f ∘ g) ∘ h) ∧
((∀g f. SR1_fupd f ∘ SR1_fupd g = SR1_fupd (f ∘ g)) ∧
∀h g f. SR1_fupd f ∘ SR1_fupd g ∘ h = SR1_fupd (f ∘ g) ∘ h) ∧
((∀g f. SRP_fupd f ∘ SRP_fupd g = SRP_fupd (f ∘ g)) ∧
∀h g f. SRP_fupd f ∘ SRP_fupd g ∘ h = SRP_fupd (f ∘ g) ∘ h) ∧
(∀g f. SRM_fupd f ∘ SRM_fupd g = SRM_fupd (f ∘ g)) ∧
∀h g f. SRM_fupd f ∘ SRM_fupd g ∘ h = SRM_fupd (f ∘ g) ∘ h
- semi_ring_fupdfupds
-
⊢ (∀s g f.
s with <|SR0 updated_by f; SR0 updated_by g|> =
s with SR0 updated_by f ∘ g) ∧
(∀s g f.
s with <|SR1 updated_by f; SR1 updated_by g|> =
s with SR1 updated_by f ∘ g) ∧
(∀s g f.
s with <|SRP updated_by f; SRP updated_by g|> =
s with SRP updated_by f ∘ g) ∧
∀s g f.
s with <|SRM updated_by f; SRM updated_by g|> =
s with SRM updated_by f ∘ g
- semi_ring_fupdcanon_comp
-
⊢ ((∀g f. SR1_fupd f ∘ SR0_fupd g = SR0_fupd g ∘ SR1_fupd f) ∧
∀h g f. SR1_fupd f ∘ SR0_fupd g ∘ h = SR0_fupd g ∘ SR1_fupd f ∘ h) ∧
((∀g f. SRP_fupd f ∘ SR0_fupd g = SR0_fupd g ∘ SRP_fupd f) ∧
∀h g f. SRP_fupd f ∘ SR0_fupd g ∘ h = SR0_fupd g ∘ SRP_fupd f ∘ h) ∧
((∀g f. SRP_fupd f ∘ SR1_fupd g = SR1_fupd g ∘ SRP_fupd f) ∧
∀h g f. SRP_fupd f ∘ SR1_fupd g ∘ h = SR1_fupd g ∘ SRP_fupd f ∘ h) ∧
((∀g f. SRM_fupd f ∘ SR0_fupd g = SR0_fupd g ∘ SRM_fupd f) ∧
∀h g f. SRM_fupd f ∘ SR0_fupd g ∘ h = SR0_fupd g ∘ SRM_fupd f ∘ h) ∧
((∀g f. SRM_fupd f ∘ SR1_fupd g = SR1_fupd g ∘ SRM_fupd f) ∧
∀h g f. SRM_fupd f ∘ SR1_fupd g ∘ h = SR1_fupd g ∘ SRM_fupd f ∘ h) ∧
(∀g f. SRM_fupd f ∘ SRP_fupd g = SRP_fupd g ∘ SRM_fupd f) ∧
∀h g f. SRM_fupd f ∘ SRP_fupd g ∘ h = SRP_fupd g ∘ SRM_fupd f ∘ h
- semi_ring_fupdcanon
-
⊢ (∀s g f.
s with <|SR1 updated_by f; SR0 updated_by g|> =
s with <|SR0 updated_by g; SR1 updated_by f|>) ∧
(∀s g f.
s with <|SRP updated_by f; SR0 updated_by g|> =
s with <|SR0 updated_by g; SRP updated_by f|>) ∧
(∀s g f.
s with <|SRP updated_by f; SR1 updated_by g|> =
s with <|SR1 updated_by g; SRP updated_by f|>) ∧
(∀s g f.
s with <|SRM updated_by f; SR0 updated_by g|> =
s with <|SR0 updated_by g; SRM updated_by f|>) ∧
(∀s g f.
s with <|SRM updated_by f; SR1 updated_by g|> =
s with <|SR1 updated_by g; SRM updated_by f|>) ∧
∀s g f.
s with <|SRM updated_by f; SRP updated_by g|> =
s with <|SRP updated_by g; SRM updated_by f|>
- semi_ring_fn_updates
-
⊢ (∀f1 a a0 f f0.
semi_ring a a0 f f0 with SR0 updated_by f1 = semi_ring (f1 a) a0 f f0) ∧
(∀f1 a a0 f f0.
semi_ring a a0 f f0 with SR1 updated_by f1 = semi_ring a (f1 a0) f f0) ∧
(∀f1 a a0 f f0.
semi_ring a a0 f f0 with SRP updated_by f1 = semi_ring a a0 (f1 f) f0) ∧
∀f1 a a0 f f0.
semi_ring a a0 f f0 with SRM updated_by f1 = semi_ring a a0 f (f1 f0)
- semi_ring_component_equality
-
⊢ ∀s1 s2.
(s1 = s2) ⇔
(s1.SR0 = s2.SR0) ∧ (s1.SR1 = s2.SR1) ∧ (s1.SRP = s2.SRP) ∧
(s1.SRM = s2.SRM)
- semi_ring_case_eq
-
⊢ (semi_ring_CASE x f = v) ⇔
∃a a0 f' f0. (x = semi_ring a a0 f' f0) ∧ (f a a0 f' f0 = v)
- semi_ring_case_cong
-
⊢ ∀M M' f.
(M = M') ∧
(∀a0 a1 a2 a3.
(M' = semi_ring a0 a1 a2 a3) ⇒ (f a0 a1 a2 a3 = f' a0 a1 a2 a3)) ⇒
(semi_ring_CASE M f = semi_ring_CASE M' f')
- semi_ring_Axiom
-
⊢ ∀f. ∃fn. ∀a0 a1 a2 a3. fn (semi_ring a0 a1 a2 a3) = f a0 a1 a2 a3
- semi_ring_accfupds
-
⊢ (∀s f. (s with SR1 updated_by f).SR0 = s.SR0) ∧
(∀s f. (s with SRP updated_by f).SR0 = s.SR0) ∧
(∀s f. (s with SRM updated_by f).SR0 = s.SR0) ∧
(∀s f. (s with SR0 updated_by f).SR1 = s.SR1) ∧
(∀s f. (s with SRP updated_by f).SR1 = s.SR1) ∧
(∀s f. (s with SRM updated_by f).SR1 = s.SR1) ∧
(∀s f. (s with SR0 updated_by f).SRP = s.SRP) ∧
(∀s f. (s with SR1 updated_by f).SRP = s.SRP) ∧
(∀s f. (s with SRM updated_by f).SRP = s.SRP) ∧
(∀s f. (s with SR0 updated_by f).SRM = s.SRM) ∧
(∀s f. (s with SR1 updated_by f).SRM = s.SRM) ∧
(∀s f. (s with SRP updated_by f).SRM = s.SRM) ∧
(∀s f. (s with SR0 updated_by f).SR0 = f s.SR0) ∧
(∀s f. (s with SR1 updated_by f).SR1 = f s.SR1) ∧
(∀s f. (s with SRP updated_by f).SRP = f s.SRP) ∧
∀s f. (s with SRM updated_by f).SRM = f s.SRM
- semi_ring_accessors
-
⊢ (∀a a0 f f0. (semi_ring a a0 f f0).SR0 = a) ∧
(∀a a0 f f0. (semi_ring a a0 f f0).SR1 = a0) ∧
(∀a a0 f f0. (semi_ring a a0 f f0).SRP = f) ∧
∀a a0 f f0. (semi_ring a a0 f f0).SRM = f0
- semi_ring_11
-
⊢ ∀a0 a1 a2 a3 a0' a1' a2' a3'.
(semi_ring a0 a1 a2 a3 = semi_ring a0' a1' a2' a3') ⇔
(a0 = a0') ∧ (a1 = a1') ∧ (a2 = a2') ∧ (a3 = a3')
- plus_zero_right
-
⊢ ∀r. is_semi_ring r ⇒ ∀n. r.SRP n r.SR0 = n
- plus_zero_left
-
⊢ ∀r. is_semi_ring r ⇒ ∀n. r.SRP r.SR0 n = n
- plus_sym
-
⊢ ∀r. is_semi_ring r ⇒ ∀n m. r.SRP n m = r.SRP m n
- plus_rotate
-
⊢ ∀r. is_semi_ring r ⇒ ∀m n p. r.SRP (r.SRP m n) p = r.SRP (r.SRP n p) m
- plus_permute
-
⊢ ∀r. is_semi_ring r ⇒ ∀m n p. r.SRP (r.SRP m n) p = r.SRP (r.SRP m p) n
- plus_assoc
-
⊢ ∀r. is_semi_ring r ⇒ ∀n m p. r.SRP n (r.SRP m p) = r.SRP (r.SRP n m) p
- mult_zero_right
-
⊢ ∀r. is_semi_ring r ⇒ ∀n. r.SRM n r.SR0 = r.SR0
- mult_zero_left
-
⊢ ∀r. is_semi_ring r ⇒ ∀n. r.SRM r.SR0 n = r.SR0
- mult_sym
-
⊢ ∀r. is_semi_ring r ⇒ ∀n m. r.SRM n m = r.SRM m n
- mult_rotate
-
⊢ ∀r. is_semi_ring r ⇒ ∀m n p. r.SRM (r.SRM m n) p = r.SRM (r.SRM n p) m
- mult_permute
-
⊢ ∀r. is_semi_ring r ⇒ ∀m n p. r.SRM (r.SRM m n) p = r.SRM (r.SRM m p) n
- mult_one_right
-
⊢ ∀r. is_semi_ring r ⇒ ∀n. r.SRM n r.SR1 = n
- mult_one_left
-
⊢ ∀r. is_semi_ring r ⇒ ∀n. r.SRM r.SR1 n = n
- mult_assoc
-
⊢ ∀r. is_semi_ring r ⇒ ∀n m p. r.SRM n (r.SRM m p) = r.SRM (r.SRM n m) p
- FORALL_semi_ring
-
⊢ ∀P. (∀s. P s) ⇔ ∀a0 a f0 f. P <|SR0 := a0; SR1 := a; SRP := f0; SRM := f|>
- EXISTS_semi_ring
-
⊢ ∀P. (∃s. P s) ⇔ ∃a0 a f0 f. P <|SR0 := a0; SR1 := a; SRP := f0; SRM := f|>
- distr_right
-
⊢ ∀r.
is_semi_ring r ⇒
∀m n p. r.SRM m (r.SRP n p) = r.SRP (r.SRM m n) (r.SRM m p)
- distr_left
-
⊢ ∀r.
is_semi_ring r ⇒
∀n m p. r.SRM (r.SRP n m) p = r.SRP (r.SRM n p) (r.SRM m p)
- datatype_semi_ring
-
⊢ DATATYPE (record semi_ring SR0 SR1 SRP SRM)