Theory "sum_num"

Parents     indexedLists   patternMatches

Signature

Constant Type
GSUM :num # num -> (num -> num) -> num
SUM :num -> (num -> num) -> num

Definitions

SUM_def
⊢ (∀f. SUM 0 f = 0) ∧ ∀m f. SUM (SUC m) f = SUM m f + f m


Theorems

SUM_ZERO
⊢ ∀n f. (∀m. m < n ⇒ (f m = 0)) ⇔ (SUM n f = 0)
SUM_MONO
⊢ ∀m n f. m ≤ n ∧ f n ≠ 0 ⇒ SUM m f < SUM (SUC n) f
SUM_LESS
⊢ ∀m n f. (∃q. m ≤ q ∧ q < n ∧ f q ≠ 0) ⇔ SUM m f < SUM n f
SUM_FUN_EQUAL
⊢ ∀f g. (∀x. x < n ⇒ (f x = g x)) ⇒ (SUM n f = SUM n g)
SUM_FOLDL
⊢ ∀n f. SUM n f = FOLDL (λx n. f n + x) 0 (COUNT_LIST n)
SUM_EQUAL
⊢ ∀m n f.
      (SUM m f = SUM n f) ⇔
      m ≤ n ∧ (∀q. m ≤ q ∧ q < n ⇒ (f q = 0)) ∨
      n < m ∧ ∀q. n ≤ q ∧ q < m ⇒ (f q = 0)
SUM_compute
⊢ (∀f. SUM 0 f = 0) ∧
  (∀m f.
       SUM (NUMERAL (BIT1 m)) f =
       SUM (NUMERAL (BIT1 m) − 1) f + f (NUMERAL (BIT1 m) − 1)) ∧
  ∀m f.
      SUM (NUMERAL (BIT2 m)) f =
      SUM (NUMERAL (BIT1 m)) f + f (NUMERAL (BIT1 m))
SUM_1
⊢ ∀f. SUM 1 f = f 0
SUM
⊢ ∀m f. SUM m f = GSUM (0,m) f
GSUM_ZERO
⊢ ∀p n f. (∀m. p ≤ m ∧ m < p + n ⇒ (f m = 0)) ⇔ (GSUM (p,n) f = 0)
GSUM_MONO
⊢ ∀p m n f. m ≤ n ∧ f (p + n) ≠ 0 ⇒ GSUM (p,m) f < GSUM (p,SUC n) f
GSUM_LESS
⊢ ∀p m n f.
      (∃q. m + p ≤ q ∧ q < n + p ∧ f q ≠ 0) ⇔ GSUM (p,m) f < GSUM (p,n) f
GSUM_ind
⊢ ∀P.
      (∀n f. P (n,0) f) ∧ (∀n m f. P (n,m) f ⇒ P (n,SUC m) f) ⇒
      ∀v v1 v2. P (v,v1) v2
GSUM_FUN_EQUAL
⊢ ∀p n f g.
      (∀x. p ≤ x ∧ x < p + n ⇒ (f x = g x)) ⇒ (GSUM (p,n) f = GSUM (p,n) g)
GSUM_EQUAL
⊢ ∀p m n f.
      (GSUM (p,m) f = GSUM (p,n) f) ⇔
      m ≤ n ∧ (∀q. p + m ≤ q ∧ q < p + n ⇒ (f q = 0)) ∨
      n < m ∧ ∀q. p + n ≤ q ∧ q < p + m ⇒ (f q = 0)
GSUM_def
⊢ (∀n f. GSUM (n,0) f = 0) ∧
  ∀n m f. GSUM (n,SUC m) f = GSUM (n,m) f + f (n + m)
GSUM_compute
⊢ (∀n f. GSUM (n,0) f = 0) ∧
  (∀n m f.
       GSUM (n,NUMERAL (BIT1 m)) f =
       GSUM (n,NUMERAL (BIT1 m) − 1) f + f (n + (NUMERAL (BIT1 m) − 1))) ∧
  ∀n m f.
      GSUM (n,NUMERAL (BIT2 m)) f =
      GSUM (n,NUMERAL (BIT1 m)) f + f (n + NUMERAL (BIT1 m))
GSUM_ADD
⊢ ∀p m n f. GSUM (p,m + n) f = GSUM (p,m) f + GSUM (p + m,n) f
GSUM_1
⊢ ∀m f. GSUM (m,1) f = f m