- TC_MOD_LEM
-
⊢ ∀R s x f.
x ∈ FDOM f ∧ (subTC R s = FMAP_TO_RELN f) ⇒
(subTC R (x INSERT s) = FMAP_TO_RELN (TC_MOD x (f ' x) o_f f))
- TC_MOD_EMPTY_ID
-
⊢ ∀x ra. TC_MOD x ∅ = I
- TC_ITER_THM
-
⊢ ∀R d f s.
(s ∪ LIST_TO_SET d = FDOM f) ∧ (subTC R s = FMAP_TO_RELN f) ⇒
(R⁺ = FMAP_TO_RELN (TC_ITER d f))
- subTC_thm
-
⊢ ∀R s. subTC R s = R ∪ᵣ R ∘ᵣ ((R ^|^ s)⃰ ^| s) ∘ᵣ R
- subTC_SUPERSET_RDOM
-
⊢ ∀R s. FINITE s ⇒ (subTC R (RDOM R ∪ s) = subTC R (RDOM R))
- subTC_RDOM
-
⊢ ∀R. subTC R (RDOM R) = R⁺
- subTC_MAX_RDOM
-
⊢ ∀R s x. x ∉ RDOM R ⇒ (subTC R (x INSERT s) = subTC R s)
- subTC_INSERT_COR
-
⊢ ∀R s x a.
subTC R (x INSERT s) a =
if x ∈ subTC R s a then subTC R s a ∪ subTC R s x else subTC R s a
- subTC_INSERT
-
⊢ ∀R s q x y.
subTC R (q INSERT s) x y ⇔ subTC R s x y ∨ subTC R s x q ∧ subTC R s q y
- subTC_FDOM_RDOM
-
⊢ ∀R f.
(subTC R (FDOM f) = FMAP_TO_RELN f) ⇒
(subTC R (RDOM R) = FMAP_TO_RELN f)
- subTC_FDOM
-
⊢ ∀g R.
(subTC R (RDOM R) = FMAP_TO_RELN g) ⇒
(subTC R (FDOM g) = subTC R (RDOM R))
- subTC_EMPTY
-
⊢ ∀R. subTC R ∅ = R
- SUBSET_FDOM_LEM
-
⊢ ∀R s f. (subTC R s = FMAP_TO_RELN f) ⇒ RDOM R ⊆ FDOM f
- RTC_INSERT
-
⊢ ∀R s a w z.
(R ^|^ (a INSERT s))⃰ w z ⇔
(R ^|^ s)⃰ w z ∨
((a = w) ∨ ∃x. x ∈ s ∧ (R ^|^ s)⃰ w x ∧ R x a) ∧
((a = z) ∨ ∃y. y ∈ s ∧ R a y ∧ (R ^|^ s)⃰ y z)
- REMPTY_RRESTR
-
⊢ ∀s. ∅ᵣ |^ s = ∅ᵣ
- RELN_TO_FMAP_TO_RELN_ID
-
⊢ ∀R. FINITE (RDOM R) ⇒ (FMAP_TO_RELN (RELN_TO_FMAP R) = R)
- RDOM_subTC
-
⊢ ∀R s. RDOM (subTC R s) = RDOM R
- RDOM_SUBSET_FDOM
-
⊢ ∀f. RDOM (FMAP_TO_RELN f) ⊆ FDOM f
- O_REMPTY_O
-
⊢ (∀R. R ∘ᵣ ∅ᵣ = ∅ᵣ) ∧ ∀R. ∅ᵣ ∘ᵣ R = ∅ᵣ
- NOT_IN_RDOM
-
⊢ ∀Q x. (Q x = ∅) ⇔ x ∉ RDOM Q
- I_o_f
-
⊢ ∀f. I o_f f = f
- FINITE_RDOM
-
⊢ ∀f. FINITE (RDOM (FMAP_TO_RELN f))
- FDOM_RDOM
-
⊢ ∀R. FINITE (RDOM R) ⇒ (FDOM (RELN_TO_FMAP R) = RDOM R)
- DRESTR_RDOM
-
⊢ ∀R. R ^| RDOM R = R
- DRESTR_IN
-
⊢ ∀R s a. (R ^| s) a = if a ∈ s then R a else ∅
- DRESTR_EMPTY
-
⊢ ∀R. R ^| ∅ = ∅ᵣ