Theory "ucord"

Parents     ordinal

Signature

Constant Type
omega1 :(α + (num -> bool)) ordinal

Definitions

omega1_def
⊢ ω₁ = sup {a | countableOrd a}


Theorems

x_lt_omega1_countable
⊢ x < ω₁ ⇔ countableOrd x
Unum_cardlt_ucinf
⊢ 𝕌(:num) ≺ 𝕌(:num + α + (num -> bool))
Unum_cardle_ucinf
⊢ 𝕌(:num) ≼ 𝕌(:num + α + (num -> bool))
ucord_sup_exists_lemma
⊢ {a | countableOrd a} ≼ 𝕌(:num + α + (num -> bool))
ucinf_uncountable
⊢ ¬COUNTABLE 𝕌(:num + α + (num -> bool))
omega1_not_countable
⊢ ¬countableOrd ω₁