Theory "derivative"

Parents     real_topology

Signature

Constant Type
convex :(real -> bool) -> bool
convex_on :(real -> real) -> (real -> bool) -> bool
differentiable :(real -> real) -> real net -> bool
differentiable_on :(real -> real) -> (real -> bool) -> bool
frechet_derivative :(real -> real) -> real net -> real -> real
has_derivative :(real -> real) -> (real -> real) -> real net -> bool
has_vector_derivative :(real -> real) -> real -> real net -> bool
oabs :(real -> real) -> real
vector_derivative :(real -> real) -> real net -> real

Definitions

convex
⊢ ∀s. convex s ⇔
      ∀x y u v.
        x ∈ s ∧ y ∈ s ∧ 0 ≤ u ∧ 0 ≤ v ∧ (u + v = 1) ⇒ u * x + v * y ∈ s
convex_on
⊢ ∀f s.
    f convex_on s ⇔
    ∀x y u v.
      x ∈ s ∧ y ∈ s ∧ 0 ≤ u ∧ 0 ≤ v ∧ (u + v = 1) ⇒
      f (u * x + v * y) ≤ u * f x + v * f y
differentiable
⊢ ∀f net. f differentiable net ⇔ ∃f'. (f has_derivative f') net
differentiable_on
⊢ ∀f s. f differentiable_on s ⇔ ∀x. x ∈ s ⇒ f differentiable (at x within s)
frechet_derivative
⊢ ∀f net. frechet_derivative f net = @f'. (f has_derivative f') net
has_derivative
⊢ ∀f f' net.
    (f has_derivative f') net ⇔
    linear f' ∧
    ((λy.
          (abs (y − netlimit net))⁻¹ *
          (f y − (f (netlimit net) + f' (y − netlimit net)))) ⟶ 0) net
has_vector_derivative
⊢ ∀f f' net.
    (f has_vector_derivative f') net ⇔ (f has_derivative (λx. x * f')) net
oabs
⊢ ∀f. oabs f = sup {abs (f x) | abs x = 1}
vector_derivative
⊢ ∀f net. vector_derivative f net = @f'. (f has_vector_derivative f') net


Theorems

ABS_BOUND_GENERALIZE
⊢ ∀f b.
    linear f ⇒ ((∀x. (abs x = 1) ⇒ abs (f x) ≤ b) ⇔ ∀x. abs (f x) ≤ b * abs x)
CONNECTED_COMPACT_INTERVAL_1
⊢ ∀s. connected s ∧ compact s ⇔ ∃a b. s = interval [(a,b)]
CONTINUOUS_AT_EXP
⊢ ∀z. exp continuous at z
CONTINUOUS_ON_EXP
⊢ ∀s. exp continuous_on s
CONTINUOUS_WITHIN_EXP
⊢ ∀s z. exp continuous (at z within s)
CONVEX_ALT
⊢ ∀s. convex s ⇔
      ∀x y u. x ∈ s ∧ y ∈ s ∧ 0 ≤ u ∧ u ≤ 1 ⇒ (1 − u) * x + u * y ∈ s
CONVEX_BALL
⊢ ∀x e. convex (ball (x,e))
CONVEX_CBALL
⊢ ∀x e. convex (cball (x,e))
CONVEX_CONNECTED
⊢ ∀s. convex s ⇒ connected s
CONVEX_DISTANCE
⊢ ∀s a. (λx. dist (a,x)) convex_on s
CONVEX_INDEXED
⊢ ∀s. convex s ⇔
      ∀k u x.
        (∀i. 1 ≤ i ∧ i ≤ k ⇒ 0 ≤ u i ∧ x i ∈ s) ∧ (sum (1 .. k) u = 1) ⇒
        sum (1 .. k) (λi. u i * x i) ∈ s
CONVEX_INTERVAL
⊢ ∀a b. convex (interval [(a,b)]) ∧ convex (interval (a,b))
CONVEX_SUM
⊢ ∀s k u x.
    FINITE k ∧ convex s ∧ (sum k u = 1) ∧ (∀i. i ∈ k ⇒ 0 ≤ u i ∧ x i ∈ s) ⇒
    sum k (λi. u i * x i) ∈ s
DIFFERENTIABLE_BOUND
⊢ ∀f f' s B.
    convex s ∧ (∀x. x ∈ s ⇒ (f has_derivative f' x) (at x within s)) ∧
    (∀x. x ∈ s ⇒ oabs (f' x) ≤ B) ⇒
    ∀x y. x ∈ s ∧ y ∈ s ⇒ abs (f x − f y) ≤ B * abs (x − y)
DIFFERENTIABLE_IMP_CONTINUOUS_AT
⊢ ∀f x. f differentiable at x ⇒ f continuous at x
DIFFERENTIABLE_IMP_CONTINUOUS_ON
⊢ ∀f s. f differentiable_on s ⇒ f continuous_on s
DIFFERENTIABLE_IMP_CONTINUOUS_WITHIN
⊢ ∀f x s. f differentiable (at x within s) ⇒ f continuous (at x within s)
DIFFERENTIABLE_ON_EMPTY
⊢ ∀f. f differentiable_on ∅
DIFFERENTIABLE_ON_SUBSET
⊢ ∀f s t. f differentiable_on t ∧ s ⊆ t ⇒ f differentiable_on s
DIFFERENTIABLE_WITHIN_SUBSET
⊢ ∀f s t x.
    f differentiable (at x within t) ∧ s ⊆ t ⇒
    f differentiable (at x within s)
DIFFERENTIAL_COMPONENT_NEG_AT_MAXIMUM
⊢ ∀f f' x s e.
    x ∈ s ∧ convex s ∧ (f has_derivative f') (at x within s) ∧ 0 < e ∧
    (∀w. w ∈ s ∩ ball (x,e) ⇒ f w ≤ f x) ⇒
    ∀y. y ∈ s ⇒ f' (y − x) ≤ 0
DIFFERENTIAL_COMPONENT_POS_AT_MINIMUM
⊢ ∀f f' x s e.
    x ∈ s ∧ convex s ∧ (f has_derivative f') (at x within s) ∧ 0 < e ∧
    (∀w. w ∈ s ∩ ball (x,e) ⇒ f x ≤ f w) ⇒
    ∀y. y ∈ s ⇒ 0 ≤ f' (y − x)
DIFFERENTIAL_COMPONENT_ZERO_AT_MAXMIN
⊢ ∀f f' x s.
    x ∈ s ∧ open s ∧ (f has_derivative f') (at x) ∧
    ((∀w. w ∈ s ⇒ f w ≤ f x) ∨ ∀w. w ∈ s ⇒ f x ≤ f w) ⇒
    ∀h. f' h = 0
DIFFERENTIAL_ZERO_MAXMIN
⊢ ∀f f' x s.
    x ∈ s ∧ open s ∧ (f has_derivative f') (at x) ∧
    ((∀y. y ∈ s ⇒ f y ≤ f x) ∨ ∀y. y ∈ s ⇒ f x ≤ f y) ⇒
    (f' = (λv. 0))
DIFF_CHAIN_WITHIN
⊢ ∀f g f' g' x s.
    (f has_derivative f') (at x within s) ∧
    (g has_derivative g') (at (f x) within IMAGE f s) ⇒
    (g ∘ f has_derivative g' ∘ f') (at x within s)
EXP_CONVERGES
⊢ ∀z. ((λn. z pow n / &FACT n) sums exp z) (from 0)
EXP_CONVERGES_UNIFORMLY
⊢ ∀R e.
    0 < R ∧ 0 < e ⇒
    ∃N. ∀n z.
      n ≥ N ∧ abs z < R ⇒
      abs (sum (0 .. n) (λi. z pow i / &FACT i) − exp z) ≤ e
EXP_CONVERGES_UNIFORMLY_CAUCHY
⊢ ∀R e.
    0 < e ∧ 0 < R ⇒
    ∃N. ∀m n z.
      m ≥ N ∧ abs z ≤ R ⇒ abs (sum (m .. n) (λi. z pow i / &FACT i)) < e
EXP_CONVERGES_UNIQUE
⊢ ∀w z. ((λn. z pow n / &FACT n) sums w) (from 0) ⇔ (w = exp z)
FRECHET_DERIVATIVE_WORKS
⊢ ∀f net.
    f differentiable net ⇔ (f has_derivative frechet_derivative f net) net
HAS_DERIVATIVE_ADD
⊢ ∀f f' g g' net.
    (f has_derivative f') net ∧ (g has_derivative g') net ⇒
    ((λx. f x + g x) has_derivative (λh. f' h + g' h)) net
HAS_DERIVATIVE_AT
⊢ ∀f f' x.
    (f has_derivative f') (at x) ⇔
    linear f' ∧
    ∀e. 0 < e ⇒
        ∃d. 0 < d ∧
            ∀x'.
              0 < abs (x' − x) ∧ abs (x' − x) < d ⇒
              abs (f x' − f x − f' (x' − x)) / abs (x' − x) < e
HAS_DERIVATIVE_AT_ALT
⊢ ∀f f' x.
    (f has_derivative f') (at x) ⇔
    linear f' ∧
    ∀e. 0 < e ⇒
        ∃d. 0 < d ∧
            ∀y. abs (y − x) < d ⇒
                abs (f y − f x − f' (y − x)) ≤ e * abs (y − x)
HAS_DERIVATIVE_AT_WITHIN
⊢ ∀f f' x s.
    (f has_derivative f') (at x) ⇒ (f has_derivative f') (at x within s)
HAS_DERIVATIVE_BILINEAR_AT
⊢ ∀h f g f' g' x.
    (f has_derivative f') (at x) ∧ (g has_derivative g') (at x) ∧ bilinear h ⇒
    ((λx. h (f x) (g x)) has_derivative (λd. h (f x) (g' d) + h (f' d) (g x)))
      (at x)
HAS_DERIVATIVE_BILINEAR_WITHIN
⊢ ∀h f g f' g' x s.
    (f has_derivative f') (at x within s) ∧
    (g has_derivative g') (at x within s) ∧ bilinear h ⇒
    ((λx. h (f x) (g x)) has_derivative (λd. h (f x) (g' d) + h (f' d) (g x)))
      (at x within s)
HAS_DERIVATIVE_CMUL
⊢ ∀f f' net c.
    (f has_derivative f') net ⇒
    ((λx. c * f x) has_derivative (λh. c * f' h)) net
HAS_DERIVATIVE_CONST
⊢ ∀c net. ((λx. c) has_derivative (λh. 0)) net
HAS_DERIVATIVE_EXP
⊢ ∀z. (exp has_derivative (λy. exp z * y)) (at z)
HAS_DERIVATIVE_ID
⊢ ∀net. ((λx. x) has_derivative (λh. h)) net
HAS_DERIVATIVE_IMP_CONTINUOUS_AT
⊢ ∀f f' x. (f has_derivative f') (at x) ⇒ f continuous at x
HAS_DERIVATIVE_LINEAR
⊢ ∀f net. linear f ⇒ (f has_derivative f) net
HAS_DERIVATIVE_MUL_AT
⊢ ∀f f' g g' a.
    (f has_derivative f') (at a) ∧ (g has_derivative g') (at a) ⇒
    ((λx. f x * g x) has_derivative (λh. f a * g' h + f' h * g a)) (at a)
HAS_DERIVATIVE_MUL_WITHIN
⊢ ∀f f' g g' a s.
    (f has_derivative f') (at a within s) ∧
    (g has_derivative g') (at a within s) ⇒
    ((λx. f x * g x) has_derivative (λh. f a * g' h + f' h * g a))
      (at a within s)
HAS_DERIVATIVE_NEG
⊢ ∀f f' net.
    (f has_derivative f') net ⇒ ((λx. -f x) has_derivative (λh. -f' h)) net
HAS_DERIVATIVE_POW
⊢ ∀q0 n.
    ((λq. q pow n) has_derivative
     (λq. sum (1 .. n) (λi. q0 pow (n − i) * q * q0 pow (i − 1)))) (at q0)
HAS_DERIVATIVE_SEQUENCE
⊢ ∀s f f' g'.
    convex s ∧ (∀n x. x ∈ s ⇒ (f n has_derivative f' n x) (at x within s)) ∧
    (∀e. 0 < e ⇒
         ∃N. ∀n x h. n ≥ N ∧ x ∈ s ⇒ abs (f' n x h − g' x h) ≤ e * abs h) ∧
    (∃x l. x ∈ s ∧ ((λn. f n x) ⟶ l) sequentially) ⇒
    ∃g. ∀x.
      x ∈ s ⇒
      ((λn. f n x) ⟶ g x) sequentially ∧
      (g has_derivative g' x) (at x within s)
HAS_DERIVATIVE_SEQUENCE_LIPSCHITZ
⊢ ∀s f f' g'.
    convex s ∧ (∀n x. x ∈ s ⇒ (f n has_derivative f' n x) (at x within s)) ∧
    (∀e. 0 < e ⇒
         ∃N. ∀n x h. n ≥ N ∧ x ∈ s ⇒ abs (f' n x h − g' x h) ≤ e * abs h) ⇒
    ∀e. 0 < e ⇒
        ∃N. ∀m n x y.
          m ≥ N ∧ n ≥ N ∧ x ∈ s ∧ y ∈ s ⇒
          abs (f m x − f n x − (f m y − f n y)) ≤ e * abs (x − y)
HAS_DERIVATIVE_SERIES
⊢ ∀s f f' g' k.
    convex s ∧ (∀n x. x ∈ s ⇒ (f n has_derivative f' n x) (at x within s)) ∧
    (∀e. 0 < e ⇒
         ∃N. ∀n x h.
           n ≥ N ∧ x ∈ s ⇒
           abs (sum (k ∩ {x | 0 ≤ x ∧ x ≤ n}) (λi. f' i x h) − g' x h) ≤
           e * abs h) ∧ (∃x l. x ∈ s ∧ ((λn. f n x) sums l) k) ⇒
    ∃g. ∀x.
      x ∈ s ⇒
      ((λn. f n x) sums g x) k ∧ (g has_derivative g' x) (at x within s)
HAS_DERIVATIVE_SERIES'
⊢ ∀s f f' g' k.
    convex s ∧
    (∀n x. x ∈ s ⇒ (f n has_derivative (λy. f' n x * y)) (at x within s)) ∧
    (∀e. 0 < e ⇒
         ∃N. ∀n x.
           n ≥ N ∧ x ∈ s ⇒ abs (sum (k ∩ (0 .. n)) (λi. f' i x) − g' x) ≤ e) ∧
    (∃x l. x ∈ s ∧ ((λn. f n x) sums l) k) ⇒
    ∃g. ∀x.
      x ∈ s ⇒
      ((λn. f n x) sums g x) k ∧
      (g has_derivative (λy. g' x * y)) (at x within s)
HAS_DERIVATIVE_SUB
⊢ ∀f f' g g' net.
    (f has_derivative f') net ∧ (g has_derivative g') net ⇒
    ((λx. f x − g x) has_derivative (λh. f' h − g' h)) net
HAS_DERIVATIVE_SUM
⊢ ∀f f' net s.
    FINITE s ∧ (∀a. a ∈ s ⇒ (f a has_derivative f' a) net) ⇒
    ((λx. sum s (λa. f a x)) has_derivative (λh. sum s (λa. f' a h))) net
HAS_DERIVATIVE_TRANSFORM_AT
⊢ ∀f f' g x d.
    0 < d ∧ (∀x'. dist (x',x) < d ⇒ (f x' = g x')) ∧
    (f has_derivative f') (at x) ⇒
    (g has_derivative f') (at x)
HAS_DERIVATIVE_TRANSFORM_WITHIN
⊢ ∀f f' g x s d.
    0 < d ∧ x ∈ s ∧ (∀x'. x' ∈ s ∧ dist (x',x) < d ⇒ (f x' = g x')) ∧
    (f has_derivative f') (at x within s) ⇒
    (g has_derivative f') (at x within s)
HAS_DERIVATIVE_WITHIN
⊢ ∀f f' x s.
    (f has_derivative f') (at x within s) ⇔
    linear f' ∧
    ∀e. 0 < e ⇒
        ∃d. 0 < d ∧
            ∀x'.
              x' ∈ s ∧ 0 < abs (x' − x) ∧ abs (x' − x) < d ⇒
              abs (f x' − f x − f' (x' − x)) / abs (x' − x) < e
HAS_DERIVATIVE_WITHIN_ALT
⊢ ∀f f' s x.
    (f has_derivative f') (at x within s) ⇔
    linear f' ∧
    ∀e. 0 < e ⇒
        ∃d. 0 < d ∧
            ∀y. y ∈ s ∧ abs (y − x) < d ⇒
                abs (f y − f x − f' (y − x)) ≤ e * abs (y − x)
HAS_DERIVATIVE_WITHIN_OPEN
⊢ ∀f f' a s.
    a ∈ s ∧ open s ⇒
    ((f has_derivative f') (at a within s) ⇔ (f has_derivative f') (at a))
HAS_DERIVATIVE_WITHIN_SUBSET
⊢ ∀f f' s t x.
    (f has_derivative f') (at x within s) ∧ t ⊆ s ⇒
    (f has_derivative f') (at x within t)
HAS_VECTOR_DERIVATIVE_AT_WITHIN
⊢ ∀f f' x s.
    (f has_vector_derivative f') (at x) ⇒
    (f has_vector_derivative f') (at x within s)
HAS_VECTOR_DERIVATIVE_BILINEAR_AT
⊢ ∀h f g f' g' x.
    (f has_vector_derivative f') (at x) ∧
    (g has_vector_derivative g') (at x) ∧ bilinear h ⇒
    ((λx. h (f x) (g x)) has_vector_derivative h (f x) g' + h f' (g x)) (at x)
HAS_VECTOR_DERIVATIVE_BILINEAR_WITHIN
⊢ ∀h f g f' g' x s.
    (f has_vector_derivative f') (at x within s) ∧
    (g has_vector_derivative g') (at x within s) ∧ bilinear h ⇒
    ((λx. h (f x) (g x)) has_vector_derivative h (f x) g' + h f' (g x))
      (at x within s)
HAS_VECTOR_DERIVATIVE_WITHIN_SUBSET
⊢ ∀f f' s t x.
    (f has_vector_derivative f') (at x within s) ∧ t ⊆ s ⇒
    (f has_vector_derivative f') (at x within t)
IN_CONVEX_SET
⊢ ∀s a b u. convex s ∧ a ∈ s ∧ b ∈ s ∧ 0 ≤ u ∧ u ≤ 1 ⇒ (1 − u) * a + u * b ∈ s
IS_INTERVAL_CONNECTED
⊢ ∀s. is_interval s ⇒ connected s
IS_INTERVAL_CONNECTED_1
⊢ ∀s. is_interval s ⇔ connected s
IS_INTERVAL_CONVEX
⊢ ∀s. is_interval s ⇒ convex s
IS_INTERVAL_CONVEX_1
⊢ ∀s. is_interval s ⇔ convex s
LIMPT_APPROACHABLE
⊢ ∀x s.
    x limit_point_of s ⇔ ∀e. 0 < e ⇒ ∃x'. x' ∈ s ∧ x' ≠ x ∧ dist (x',x) < e
LIMPT_OF_CONVEX
⊢ ∀s x. convex s ∧ x ∈ s ⇒ (x limit_point_of s ⇔ s ≠ {x})
LIM_MUL_ABS_WITHIN
⊢ ∀f a s.
    (f ⟶ 0) (at a within s) ⇒ ((λx. abs (x − a) * f x) ⟶ 0) (at a within s)
LINEAR_FRECHET_DERIVATIVE
⊢ ∀f net. f differentiable net ⇒ linear (frechet_derivative f net)
MVT
⊢ ∀f f' a b.
    a < b ∧ f continuous_on interval [(a,b)] ∧
    (∀x. x ∈ interval (a,b) ⇒ (f has_derivative f' x) (at x)) ⇒
    ∃x. x ∈ interval (a,b) ∧ (f b − f a = f' x (b − a))
MVT_GENERAL
⊢ ∀f f' a b.
    a < b ∧ f continuous_on interval [(a,b)] ∧
    (∀x. x ∈ interval (a,b) ⇒ (f has_derivative f' x) (at x)) ⇒
    ∃x. x ∈ interval (a,b) ∧ abs (f b − f a) ≤ abs (f' x (b − a))
OABS
⊢ ∀f. linear f ⇒
      (∀x. abs (f x) ≤ oabs f * abs x) ∧
      ∀b. (∀x. abs (f x) ≤ b * abs x) ⇒ oabs f ≤ b
REAL_CONVEX_BOUND2_LT
⊢ ∀x y a b u v.
    x < a ∧ y < b ∧ 0 ≤ u ∧ 0 ≤ v ∧ (u + v = 1) ⇒
    u * x + v * y < u * a + v * b
REAL_CONVEX_BOUND_LT
⊢ ∀x y a u v. x < a ∧ y < a ∧ 0 ≤ u ∧ 0 ≤ v ∧ (u + v = 1) ⇒ u * x + v * y < a
REAL_MUL_NZ
⊢ ∀a b. a ≠ 0 ∧ b ≠ 0 ⇒ a * b ≠ 0
ROLLE
⊢ ∀f f' a b.
    a < b ∧ (f a = f b) ∧ f continuous_on interval [(a,b)] ∧
    (∀x. x ∈ interval (a,b) ⇒ (f has_derivative f' x) (at x)) ⇒
    ∃x. x ∈ interval (a,b) ∧ (f' x = (λv. 0))
TRIVIAL_LIMIT_WITHIN_CONVEX
⊢ ∀s x. convex s ∧ x ∈ s ⇒ (trivial_limit (at x within s) ⇔ (s = {x}))
has_derivative_at
⊢ ∀f f' x.
    (f has_derivative f') (at x) ⇔
    linear f' ∧
    ((λy. (abs (y − x))⁻¹ * (f y − (f x + f' (y − x)))) ⟶ 0) (at x)
has_derivative_within
⊢ ∀f f' x s.
    (f has_derivative f') (at x within s) ⇔
    linear f' ∧
    ((λy. (abs (y − x))⁻¹ * (f y − (f x + f' (y − x)))) ⟶ 0) (at x within s)