Theory "fcp"

Parents     indexedLists   patternMatches

Signature

Type Arity
bit0 1
bit1 1
cart 2
finite_image 1
Constant Type
:+ :num -> α -> α[β] -> α[β]
BIT0A :α -> α bit0
BIT0B :α -> α bit0
BIT1A :α -> α bit1
BIT1B :α -> α bit1
BIT1C :α bit1
FCP :(num -> α) -> α[β]
FCP_CONCAT :α[β] -> α[γ] -> α[β + γ]
FCP_CONS :α -> α[β] -> α[γ]
FCP_EVERY :(β -> bool) -> β[α] -> bool
FCP_EXISTS :(β -> bool) -> β[α] -> bool
FCP_FOLD :(β -> α -> β) -> β -> α[γ] -> β
FCP_FST :α[β + γ] -> α[β]
FCP_HD :α[β] -> α
FCP_MAP :(α -> β) -> α[γ] -> β[γ]
FCP_SND :α[β + γ] -> α[γ]
FCP_TL :α[γ] -> α[β]
FCP_ZIP :α[β] -> γ[β] -> (α # γ)[β]
L2V :α list -> α[β]
V2L :α[β] -> α list
bit0_CASE :α bit0 -> (α -> β) -> (α -> β) -> β
bit0_size :(α -> num) -> α bit0 -> num
bit1_CASE :α bit1 -> (α -> β) -> (α -> β) -> β -> β
bit1_size :(α -> num) -> α bit1 -> num
dest_cart :α[β] -> β finite_image -> α
dest_finite_image :α finite_image -> α
dimindex :α itself -> num
fcp_CASE :α[β] -> ((β finite_image -> α) -> γ) -> γ
fcp_index :α[β] -> num -> α
finite_index :num -> α
mk_cart :(β finite_image -> α) -> α[β]
mk_finite_image :α -> α finite_image

Definitions

FCP
⊢ $FCP = (λg. @f. ∀i. i < dimindex (:β) ⇒ (f ' i = g i))
FCP_CONCAT_def
⊢ ∀a b.
    FCP_CONCAT a b =
    FCP i. if i < dimindex (:γ) then b ' i else a ' (i − dimindex (:γ))
FCP_CONS_def
⊢ ∀h v. FCP_CONS h v = (0 :+ h) (FCP i. v ' (PRE i))
FCP_EVERY_def
⊢ ∀P v. FCP_EVERY P v ⇔ ∀i. dimindex (:α) ≤ i ∨ P (v ' i)
FCP_EXISTS_def
⊢ ∀P v. FCP_EXISTS P v ⇔ ∃i. i < dimindex (:α) ∧ P (v ' i)
FCP_FOLD_def
⊢ ∀f i v. FCP_FOLD f i v = FOLDL f i (V2L v)
FCP_FST_def
⊢ ∀a. FCP_FST a = FCP i. a ' (i + dimindex (:γ))
FCP_HD_def
⊢ ∀v. FCP_HD v = v ' 0
FCP_MAP_def
⊢ ∀f v. FCP_MAP f v = FCP i. f (v ' i)
FCP_SND_def
⊢ ∀b. FCP_SND b = FCP i. b ' i
FCP_TL_def
⊢ ∀v. FCP_TL v = FCP i. v ' (SUC i)
FCP_UPDATE_def
⊢ ∀a b. a :+ b = (λm. FCP c. if a = c then b else m ' c)
FCP_ZIP_def
⊢ ∀a b. FCP_ZIP a b = FCP i. (a ' i,b ' i)
L2V_def
⊢ ∀L. L2V L = FCP i. EL i L
V2L_def
⊢ ∀v. V2L v = GENLIST ($' v) (dimindex (:β))
bit0_TY_DEF
⊢ ∃rep.
    TYPE_DEFINITION
      (λa0.
           ∀ $var$('bit0').
             (∀a0.
                (∃a. a0 = (λa. ind_type$CONSTR 0 a (λn. ind_type$BOTTOM)) a) ∨
                (∃a. a0 =
                     (λa. ind_type$CONSTR (SUC 0) a (λn. ind_type$BOTTOM)) a) ⇒
                $var$('bit0') a0) ⇒
             $var$('bit0') a0) rep
bit0_case_def
⊢ (∀a f f1. bit0_CASE (BIT0A a) f f1 = f a) ∧
  ∀a f f1. bit0_CASE (BIT0B a) f f1 = f1 a
bit0_size_def
⊢ (∀f a. bit0_size f (BIT0A a) = 1 + f a) ∧
  ∀f a. bit0_size f (BIT0B a) = 1 + f a
bit1_TY_DEF
⊢ ∃rep.
    TYPE_DEFINITION
      (λa0.
           ∀ $var$('bit1').
             (∀a0.
                (∃a. a0 = (λa. ind_type$CONSTR 0 a (λn. ind_type$BOTTOM)) a) ∨
                (∃a. a0 =
                     (λa. ind_type$CONSTR (SUC 0) a (λn. ind_type$BOTTOM)) a) ∨
                (a0 = ind_type$CONSTR (SUC (SUC 0)) ARB (λn. ind_type$BOTTOM)) ⇒
                $var$('bit1') a0) ⇒
             $var$('bit1') a0) rep
bit1_case_def
⊢ (∀a f f1 v. bit1_CASE (BIT1A a) f f1 v = f a) ∧
  (∀a f f1 v. bit1_CASE (BIT1B a) f f1 v = f1 a) ∧
  ∀f f1 v. bit1_CASE BIT1C f f1 v = v
bit1_size_def
⊢ (∀f a. bit1_size f (BIT1A a) = 1 + f a) ∧
  (∀f a. bit1_size f (BIT1B a) = 1 + f a) ∧ ∀f. bit1_size f BIT1C = 0
cart_TY_DEF
⊢ ∃rep. TYPE_DEFINITION (λf. T) rep
cart_tybij
⊢ (∀a. mk_cart (dest_cart a) = a) ∧
  ∀r. (λf. T) r ⇔ (dest_cart (mk_cart r) = r)
dimindex_def
⊢ dimindex (:α) = if FINITE 𝕌(:α) then CARD 𝕌(:α) else 1
fcp_case_def
⊢ ∀h f. fcp_CASE (mk_cart h) f = f h
fcp_index
⊢ ∀x i. x ' i = dest_cart x (finite_index i)
finite_image_TY_DEF
⊢ ∃rep. TYPE_DEFINITION (λx. (x = ARB) ∨ FINITE 𝕌(:α)) rep
finite_image_tybij
⊢ (∀a. mk_finite_image (dest_finite_image a) = a) ∧
  ∀r. (λx. (x = ARB) ∨ FINITE 𝕌(:α)) r ⇔
      (dest_finite_image (mk_finite_image r) = r)
finite_index_def
⊢ finite_index = @f. ∀x. ∃!n. n < dimindex (:α) ∧ (f n = x)


Theorems

APPLY_FCP_UPDATE_ID
⊢ ∀m a. (a :+ m ' a) m = m
CART_EQ
⊢ ∀x y. (x = y) ⇔ ∀i. i < dimindex (:β) ⇒ (x ' i = y ' i)
DIMINDEX_GE_1
⊢ 1 ≤ dimindex (:α)
EL_V2L
⊢ ∀i v. i < dimindex (:β) ⇒ (EL i (V2L v) = v ' i)
FCP_APPLY_UPDATE_THM
⊢ ∀m a w b.
    (a :+ w) m ' b =
    if b < dimindex (:β) then if a = b then w else m ' b
    else FAIL $' $var$(index out of range) ((a :+ w) m) b
FCP_BETA
⊢ ∀i. i < dimindex (:β) ⇒ ($FCP g ' i = g i)
FCP_CONCAT_11
⊢ ∀a b c d.
    FINITE 𝕌(:β) ∧ FINITE 𝕌(:γ) ∧ (FCP_CONCAT a b = FCP_CONCAT c d) ⇒
    (a = c) ∧ (b = d)
FCP_CONCAT_THM
⊢ ∀a b.
    FINITE 𝕌(:β) ∧ FINITE 𝕌(:γ) ⇒
    (FCP_FST (FCP_CONCAT a b) = a) ∧ (FCP_SND (FCP_CONCAT a b) = b)
FCP_CONS
⊢ ∀a v. FCP_CONS a v = L2V (a::V2L v)
FCP_ETA
⊢ ∀g. (FCP i. g ' i) = g
FCP_EVERY
⊢ ∀P v. FCP_EVERY P v ⇔ EVERY P (V2L v)
FCP_EXISTS
⊢ ∀P v. FCP_EXISTS P v ⇔ EXISTS P (V2L v)
FCP_HD
⊢ ∀v. FCP_HD v = HD (V2L v)
FCP_MAP
⊢ ∀f v. FCP_MAP f v = L2V (MAP f (V2L v))
FCP_TL
⊢ ∀v. 1 < dimindex (:β) ∧ (dimindex (:γ) = dimindex (:β) − 1) ⇒
      (FCP_TL v = L2V (TL (V2L v)))
FCP_UNIQUE
⊢ ∀f g. (∀i. i < dimindex (:β) ⇒ (f ' i = g i)) ⇔ ($FCP g = f)
FCP_UPDATE_COMMUTES
⊢ ∀m a b c d. a ≠ b ⇒ ((a :+ c) ((b :+ d) m) = (b :+ d) ((a :+ c) m))
FCP_UPDATE_EQ
⊢ ∀m a b c. (a :+ c) ((a :+ b) m) = (a :+ c) m
FCP_UPDATE_IMP_ID
⊢ ∀m a v. (m ' a = v) ⇒ ((a :+ v) m = m)
LENGTH_V2L
⊢ ∀v. LENGTH (V2L v) = dimindex (:β)
NOT_FINITE_IMP_dimindex_1
⊢ INFINITE 𝕌(:α) ⇒ (dimindex (:α) = 1)
NULL_V2L
⊢ ∀v. ¬NULL (V2L v)
READ_L2V
⊢ ∀i a. i < dimindex (:β) ⇒ (L2V a ' i = EL i a)
READ_TL
⊢ ∀i a. i < dimindex (:β) ⇒ (FCP_TL a ' i = a ' (SUC i))
V2L_L2V
⊢ ∀x. (dimindex (:β) = LENGTH x) ⇒ (V2L (L2V x) = x)
bit0_11
⊢ (∀a a'. (BIT0A a = BIT0A a') ⇔ (a = a')) ∧
  ∀a a'. (BIT0B a = BIT0B a') ⇔ (a = a')
bit0_Axiom
⊢ ∀f0 f1. ∃fn. (∀a. fn (BIT0A a) = f0 a) ∧ ∀a. fn (BIT0B a) = f1 a
bit0_case_cong
⊢ ∀M M' f f1.
    (M = M') ∧ (∀a. (M' = BIT0A a) ⇒ (f a = f' a)) ∧
    (∀a. (M' = BIT0B a) ⇒ (f1 a = f1' a)) ⇒
    (bit0_CASE M f f1 = bit0_CASE M' f' f1')
bit0_case_eq
⊢ (bit0_CASE x f f1 = v) ⇔
  (∃a. (x = BIT0A a) ∧ (f a = v)) ∨ ∃a. (x = BIT0B a) ∧ (f1 a = v)
bit0_distinct
⊢ ∀a' a. BIT0A a ≠ BIT0B a'
bit0_induction
⊢ ∀P. (∀a. P (BIT0A a)) ∧ (∀a. P (BIT0B a)) ⇒ ∀b. P b
bit0_nchotomy
⊢ ∀bb. (∃a. bb = BIT0A a) ∨ ∃a. bb = BIT0B a
bit1_11
⊢ (∀a a'. (BIT1A a = BIT1A a') ⇔ (a = a')) ∧
  ∀a a'. (BIT1B a = BIT1B a') ⇔ (a = a')
bit1_Axiom
⊢ ∀f0 f1 f2. ∃fn.
    (∀a. fn (BIT1A a) = f0 a) ∧ (∀a. fn (BIT1B a) = f1 a) ∧ (fn BIT1C = f2)
bit1_case_cong
⊢ ∀M M' f f1 v.
    (M = M') ∧ (∀a. (M' = BIT1A a) ⇒ (f a = f' a)) ∧
    (∀a. (M' = BIT1B a) ⇒ (f1 a = f1' a)) ∧ ((M' = BIT1C) ⇒ (v = v')) ⇒
    (bit1_CASE M f f1 v = bit1_CASE M' f' f1' v')
bit1_case_eq
⊢ (bit1_CASE x f f1 v = v') ⇔
  (∃a. (x = BIT1A a) ∧ (f a = v')) ∨ (∃a. (x = BIT1B a) ∧ (f1 a = v')) ∨
  (x = BIT1C) ∧ (v = v')
bit1_distinct
⊢ (∀a' a. BIT1A a ≠ BIT1B a') ∧ (∀a. BIT1A a ≠ BIT1C) ∧ ∀a. BIT1B a ≠ BIT1C
bit1_induction
⊢ ∀P. (∀a. P (BIT1A a)) ∧ (∀a. P (BIT1B a)) ∧ P BIT1C ⇒ ∀b. P b
bit1_nchotomy
⊢ ∀bb. (∃a. bb = BIT1A a) ∨ (∃a. bb = BIT1B a) ∨ (bb = BIT1C)
card_dimindex
⊢ FINITE 𝕌(:α) ⇒ (CARD 𝕌(:α) = dimindex (:α))
datatype_bit0
⊢ DATATYPE (bit0 BIT0A BIT0B)
datatype_bit1
⊢ DATATYPE (bit1 BIT1A BIT1B BIT1C)
fcp_Axiom
⊢ ∀f. ∃g. ∀h. g (mk_cart h) = f h
fcp_ind
⊢ ∀P. (∀f. P (mk_cart f)) ⇒ ∀a. P a
fcp_subst_comp
⊢ ∀a b f. (x :+ y) ($FCP f) = FCP c. if x = c then y else f c
finite_bit0
⊢ FINITE 𝕌(:α bit0) ⇔ FINITE 𝕌(:α)
finite_bit1
⊢ FINITE 𝕌(:α bit1) ⇔ FINITE 𝕌(:α)
finite_one
⊢ FINITE 𝕌(:unit)
finite_sum
⊢ FINITE 𝕌(:α + β) ⇔ FINITE 𝕌(:α) ∧ FINITE 𝕌(:β)
index_bit0
⊢ dimindex (:α bit0) = if FINITE 𝕌(:α) then 2 * dimindex (:α) else 1
index_bit1
⊢ dimindex (:α bit1) = if FINITE 𝕌(:α) then 2 * dimindex (:α) + 1 else 1
index_comp
⊢ ∀f n.
    $FCP f ' n =
    if n < dimindex (:β) then f n
    else FAIL $' $var$(FCP out of bounds) ($FCP f) n
index_one
⊢ dimindex (:unit) = 1
index_sum
⊢ dimindex (:α + β) =
  if FINITE 𝕌(:α) ∧ FINITE 𝕌(:β) then dimindex (:α) + dimindex (:β) else 1