- ltree_TY_DEF
-
⊢ ∃rep. TYPE_DEFINITION ltree_rep_ok rep
- ltree_map_def
-
⊢ ∀f. ltree_map f = ltree_unfold (λt. case t of Branch a ts => (f a,ts))
- ltree_rel_def
-
⊢ ∀R x y.
ltree_rel R x y ⇔
∀path.
OPTREL (λx y. R (FST x) (FST y) ∧ (SND x = SND y)) (ltree_el x path)
(ltree_el y path)
- ltree_set_def
-
⊢ ∀t. ltree_set t = {a | ∃ts. Branch a ts ∈ subtrees t}
- rose_tree_TY_DEF
-
⊢ ∃rep.
TYPE_DEFINITION
(λa0'.
∀ $var$('rose_tree') $var$('@temp @ind_typeltree0list').
(∀a0'.
(∃a0 a1.
(a0' =
(λa0 a1.
ind_type$CONSTR 0 a0
(ind_type$FCONS a1 (λn. ind_type$BOTTOM))) a0 a1) ∧
$var$('@temp @ind_typeltree0list') a1) ⇒
$var$('rose_tree') a0') ∧
(∀a1'.
(a1' = ind_type$CONSTR (SUC 0) ARB (λn. ind_type$BOTTOM)) ∨
(∃a0 a1.
(a1' =
(λa0 a1.
ind_type$CONSTR (SUC (SUC 0)) ARB
(ind_type$FCONS a0
(ind_type$FCONS a1 (λn. ind_type$BOTTOM)))) a0
a1) ∧ $var$('rose_tree') a0 ∧
$var$('@temp @ind_typeltree0list') a1) ⇒
$var$('@temp @ind_typeltree0list') a1') ⇒
$var$('rose_tree') a0') rep
- rose_tree_case_def
-
⊢ ∀a0 a1 f. rose_tree_CASE (Rose a0 a1) f = f a0 a1
- rose_tree_size_def
-
⊢ (∀f a0 a1. rose_tree_size f (Rose a0 a1) = 1 + (f a0 + rose_tree1_size f a1)) ∧
(∀f. rose_tree1_size f [] = 0) ∧
∀f a0 a1.
rose_tree1_size f (a0::a1) =
1 + (rose_tree_size f a0 + rose_tree1_size f a1)
- subtrees_def
-
⊢ ∀t. subtrees t = {u | ∃path. ltree_lookup t path = SOME u}
- Branch_11
-
⊢ ∀a1 a2 ts1 ts2. (Branch a1 ts1 = Branch a2 ts2) ⇔ (a1 = a2) ∧ (ts1 = ts2)
- datatype_ltree
-
⊢ DATATYPE (ltree Branch)
- datatype_rose_tree
-
⊢ DATATYPE (rose_tree Rose)
- from_rose_def
-
⊢ ∀ts a.
from_rose (Rose a ts) = Branch a (fromList (MAP (λa'. from_rose a') ts))
- from_rose_ind
-
⊢ ∀P. (∀a ts. (∀a'. MEM a' ts ⇒ P a') ⇒ P (Rose a ts)) ⇒ ∀v. P v
- gen_ltree
-
⊢ gen_ltree f =
(let
(a,len) = f []
in
Branch a (LGENLIST (λn. gen_ltree (λpath. f (n::path))) len))
- gen_ltree_LNIL
-
⊢ (gen_ltree f = Branch a [||]) ⇔ (f [] = (a,SOME 0))
- ltree_CASE
-
⊢ ltree_CASE (Branch a ts) f = f a ts
- ltree_CASE_cong
-
⊢ ∀M M' f f'.
(M = M') ∧ (∀a ts. (M' = Branch a ts) ⇒ (f a ts = f' a ts)) ⇒
(ltree_CASE M f = ltree_CASE M' f')
- ltree_CASE_eq
-
⊢ (ltree_CASE t f = v) ⇔ ∃a ts. (t = Branch a ts) ∧ (f a ts = v)
- ltree_bisimulation
-
⊢ ∀t1 t2.
(t1 = t2) ⇔
∃R. R t1 t2 ∧
∀a ts a' ts'.
R (Branch a ts) (Branch a' ts') ⇒ (a = a') ∧ llist_rel R ts ts'
- ltree_cases
-
⊢ ∀t. ∃a ts. t = Branch a ts
- ltree_el_def
-
⊢ (ltree_el (Branch a ts) [] = SOME (a,LLENGTH ts)) ∧
(ltree_el (Branch a ts) (n::ns) =
case LNTH n ts of NONE => NONE | SOME t => ltree_el t ns)
- ltree_el_eqv
-
⊢ ∀t1 t2. (t1 = t2) ⇔ ∀path. ltree_el t1 path = ltree_el t2 path
- ltree_finite
-
⊢ ltree_finite (Branch a ts) ⇔ LFINITE ts ∧ ∀t. t ∈ LSET ts ⇒ ltree_finite t
- ltree_finite_cases
-
⊢ ∀a0.
ltree_finite a0 ⇔
∃a ts. (a0 = Branch a (fromList ts)) ∧ EVERY ltree_finite ts
- ltree_finite_from_rose
-
⊢ ltree_finite t ⇔ ∃r. from_rose r = t
- ltree_finite_ind
-
⊢ ∀P. (∀a ts. EVERY P ts ⇒ P (Branch a (fromList ts))) ⇒
∀t. ltree_finite t ⇒ P t
- ltree_finite_rules
-
⊢ ∀a ts. EVERY ltree_finite ts ⇒ ltree_finite (Branch a (fromList ts))
- ltree_finite_strongind
-
⊢ ∀P. (∀a ts.
EVERY (λa0. ltree_finite a0 ∧ P a0) ts ⇒ P (Branch a (fromList ts))) ⇒
∀t. ltree_finite t ⇒ P t
- ltree_lookup_def
-
⊢ (ltree_lookup t [] = SOME t) ∧
(ltree_lookup (Branch a ts) (n::ns) =
case LNTH n ts of NONE => NONE | SOME t => ltree_lookup t ns)
- ltree_map
-
⊢ ltree_map f (Branch a xs) = Branch (f a) (LMAP (ltree_map f) xs)
- ltree_map_id
-
⊢ ltree_map I t = t
- ltree_map_map
-
⊢ ltree_map f (ltree_map g t) = ltree_map (f ∘ g) t
- ltree_rel
-
⊢ ltree_rel R (Branch a ts) (Branch b us) ⇔
R a b ∧ llist_rel (ltree_rel R) ts us
- ltree_rel_O
-
⊢ ltree_rel R1 ∘ᵣ ltree_rel R2 ⊆ᵣ ltree_rel (R1 ∘ᵣ R2)
- ltree_rel_eq
-
⊢ ltree_rel $= x y ⇔ (x = y)
- ltree_set
-
⊢ ltree_set (Branch a ts) = a INSERT BIGUNION (IMAGE ltree_set (LSET ts))
- ltree_set_map
-
⊢ ltree_set (ltree_map f t) = IMAGE f (ltree_set t)
- ltree_unfold
-
⊢ ltree_unfold f seed =
(let (a,seeds) = f seed in Branch a (LMAP (ltree_unfold f) seeds))
- rose_tree_11
-
⊢ ∀a0 a1 a0' a1'. (Rose a0 a1 = Rose a0' a1') ⇔ (a0 = a0') ∧ (a1 = a1')
- rose_tree_Axiom
-
⊢ ∀f0 f1 f2. ∃fn0 fn1.
(∀a0 a1. fn0 (Rose a0 a1) = f0 a0 a1 (fn1 a1)) ∧ (fn1 [] = f1) ∧
∀a0 a1. fn1 (a0::a1) = f2 a0 a1 (fn0 a0) (fn1 a1)
- rose_tree_case_cong
-
⊢ ∀M M' f.
(M = M') ∧ (∀a0 a1. (M' = Rose a0 a1) ⇒ (f a0 a1 = f' a0 a1)) ⇒
(rose_tree_CASE M f = rose_tree_CASE M' f')
- rose_tree_case_eq
-
⊢ (rose_tree_CASE x f = v) ⇔ ∃a l. (x = Rose a l) ∧ (f a l = v)
- rose_tree_induction
-
⊢ ∀P. (∀a ts. (∀a'. MEM a' ts ⇒ P a') ⇒ P (Rose a ts)) ⇒ ∀v. P v
- rose_tree_nchotomy
-
⊢ ∀rr. ∃a l. rr = Rose a l
- subtrees
-
⊢ subtrees (Branch a ts) =
Branch a ts INSERT BIGUNION (IMAGE subtrees (LSET ts))