Theory "real_sigma"

Parents     transc

Signature

Constant Type
REAL_SUM_IMAGE :(α -> real) -> (α -> bool) -> real

Definitions

REAL_SUM_IMAGE_DEF
⊢ ∀f s. ∑ f s = ITSET (λe acc. f e + acc) s 0


Theorems

NESTED_REAL_SUM_IMAGE_REVERSE
⊢ ∀f s s'.
    FINITE s ∧ FINITE s' ⇒ (∑ (λx. ∑ (f x) s') s = ∑ (λx. ∑ (λy. f y x) s) s')
REAL_SUM_IMAGE_0
⊢ ∀s. FINITE s ⇒ (∑ (λx. 0) s = 0)
REAL_SUM_IMAGE_ADD
⊢ ∀s. FINITE s ⇒ ∀f f'. ∑ (λx. f x + f' x) s = ∑ f s + ∑ f' s
REAL_SUM_IMAGE_CMUL
⊢ ∀P. FINITE P ⇒ ∀f c. ∑ (λx. c * f x) P = c * ∑ f P
REAL_SUM_IMAGE_CONST_EQ_1_EQ_INV_CARD
⊢ ∀P. FINITE P ⇒
      ∀f. (∑ f P = 1) ∧ (∀x y. x ∈ P ∧ y ∈ P ⇒ (f x = f y)) ⇒
          ∀x. x ∈ P ⇒ (f x = (&CARD P)⁻¹)
REAL_SUM_IMAGE_COUNT
⊢ ∀f n. ∑ f (count n) = sum (0,n) f
REAL_SUM_IMAGE_CROSS_SYM
⊢ ∀f s1 s2.
    FINITE s1 ∧ FINITE s2 ⇒
    (∑ (λ(x,y). f (x,y)) (s1 × s2) = ∑ (λ(y,x). f (x,y)) (s2 × s1))
REAL_SUM_IMAGE_DISJOINT_UNION
⊢ ∀P P'.
    FINITE P ∧ FINITE P' ∧ DISJOINT P P' ⇒ ∀f. ∑ f (P ∪ P') = ∑ f P + ∑ f P'
REAL_SUM_IMAGE_EQ
⊢ ∀s f f'. FINITE s ∧ (∀x. x ∈ s ⇒ (f x = f' x)) ⇒ (∑ f s = ∑ f' s)
REAL_SUM_IMAGE_EQ_CARD
⊢ ∀P. FINITE P ⇒ (∑ (λx. if x ∈ P then 1 else 0) P = &CARD P)
REAL_SUM_IMAGE_EQ_sum
⊢ ∀n r. sum (0,n) r = ∑ r (count n)
REAL_SUM_IMAGE_FINITE_CONST
⊢ ∀P. FINITE P ⇒ ∀f x. (∀y. f y = x) ⇒ (∑ f P = &CARD P * x)
REAL_SUM_IMAGE_FINITE_CONST2
⊢ ∀P. FINITE P ⇒ ∀f x. (∀y. y ∈ P ⇒ (f y = x)) ⇒ (∑ f P = &CARD P * x)
REAL_SUM_IMAGE_FINITE_CONST3
⊢ ∀P. FINITE P ⇒ ∀c. ∑ (λx. c) P = &CARD P * c
REAL_SUM_IMAGE_FINITE_SAME
⊢ ∀P. FINITE P ⇒
      ∀f p. p ∈ P ∧ (∀q. q ∈ P ⇒ (f p = f q)) ⇒ (∑ f P = &CARD P * f p)
REAL_SUM_IMAGE_IF_ELIM
⊢ ∀s P f.
    FINITE s ∧ (∀x. x ∈ s ⇒ P x) ⇒ (∑ (λx. if P x then f x else 0) s = ∑ f s)
REAL_SUM_IMAGE_IMAGE
⊢ ∀P. FINITE P ⇒
      ∀f'. INJ f' P (IMAGE f' P) ⇒ ∀f. ∑ f (IMAGE f' P) = ∑ (f ∘ f') P
REAL_SUM_IMAGE_INTER_ELIM
⊢ ∀P. FINITE P ⇒ ∀f P'. (∀x. x ∉ P' ⇒ (f x = 0)) ⇒ (∑ f (P ∩ P') = ∑ f P)
REAL_SUM_IMAGE_INTER_NONZERO
⊢ ∀P. FINITE P ⇒ ∀f. ∑ f (P ∩ (λp. f p ≠ 0)) = ∑ f P
REAL_SUM_IMAGE_INV_CARD_EQ_1
⊢ ∀P. P ≠ ∅ ∧ FINITE P ⇒ (∑ (λs. if s ∈ P then (&CARD P)⁻¹ else 0) P = 1)
REAL_SUM_IMAGE_IN_IF
⊢ ∀P. FINITE P ⇒ ∀f. ∑ f P = ∑ (λx. if x ∈ P then f x else 0) P
REAL_SUM_IMAGE_IN_IF_ALT
⊢ ∀s f z. FINITE s ⇒ (∑ f s = ∑ (λx. if x ∈ s then f x else z) s)
REAL_SUM_IMAGE_MONO
⊢ ∀P. FINITE P ⇒ ∀f f'. (∀x. x ∈ P ⇒ f x ≤ f' x) ⇒ ∑ f P ≤ ∑ f' P
REAL_SUM_IMAGE_MONO_SET
⊢ ∀f s t. FINITE s ∧ FINITE t ∧ s ⊆ t ∧ (∀x. x ∈ t ⇒ 0 ≤ f x) ⇒ ∑ f s ≤ ∑ f t
REAL_SUM_IMAGE_NEG
⊢ ∀P. FINITE P ⇒ ∀f. ∑ (λx. -f x) P = -∑ f P
REAL_SUM_IMAGE_NONZERO
⊢ ∀P. FINITE P ⇒
      ∀f. (∀x. x ∈ P ⇒ 0 ≤ f x) ∧ (∃x. x ∈ P ∧ f x ≠ 0) ⇒ (∑ f P ≠ 0 ⇔ P ≠ ∅)
REAL_SUM_IMAGE_POS
⊢ ∀f s. FINITE s ∧ (∀x. x ∈ s ⇒ 0 ≤ f x) ⇒ 0 ≤ ∑ f s
REAL_SUM_IMAGE_POS_MEM_LE
⊢ ∀P. FINITE P ⇒ ∀f. (∀x. x ∈ P ⇒ 0 ≤ f x) ⇒ ∀x. x ∈ P ⇒ f x ≤ ∑ f P
REAL_SUM_IMAGE_POW
⊢ ∀a s. FINITE s ⇒ ((∑ a s)² = ∑ (λ(i,j). a i * a j) (s × s))
REAL_SUM_IMAGE_REAL_SUM_IMAGE
⊢ ∀s s' f.
    FINITE s ∧ FINITE s' ⇒
    (∑ (λx. ∑ (f x) s') s = ∑ (λx. f (FST x) (SND x)) (s × s'))
REAL_SUM_IMAGE_SING
⊢ ∀f e. ∑ f {e} = f e
REAL_SUM_IMAGE_SPOS
⊢ ∀s. FINITE s ∧ s ≠ ∅ ⇒ ∀f. (∀x. x ∈ s ⇒ 0 < f x) ⇒ 0 < ∑ f s
REAL_SUM_IMAGE_SUB
⊢ ∀s f f'. FINITE s ⇒ (∑ (λx. f x − f' x) s = ∑ f s − ∑ f' s)
REAL_SUM_IMAGE_THM
⊢ ∀f. (∑ f ∅ = 0) ∧
      ∀e s. FINITE s ⇒ (∑ f (e INSERT s) = f e + ∑ f (s DELETE e))
SEQ_REAL_SUM_IMAGE
⊢ ∀s. FINITE s ⇒
      ∀f f'. (∀x. x ∈ s ⇒ (λn. f n x) ⟶ f' x) ⇒ (λn. ∑ (f n) s) ⟶ ∑ f' s