- Delta_def
-
⊢ ∀V a b. Δ V a b ⇔ (a = b) ∧ a ∈ V
- Gr_def
-
⊢ ∀h A a b. Gr h A a b ⇔ a ∈ A ∧ (b = h a)
- RIMAGE_def
-
⊢ ∀f A R x y.
RIMAGE f A R x y ⇔
∃x0 y0. (x = f x0) ∧ (y = f y0) ∧ R x0 y0 ∧ x0 ∈ A ∧ y0 ∈ A
- RINV_IMAGE_def
-
⊢ ∀f A R x y. RINV_IMAGE f A R x y ⇔ x ∈ A ∧ y ∈ A ∧ R (f x) (f y)
- SPO_def
-
⊢ ∀A B C f g.
SPO A B C f g =
(partition (SPOr A f g) (B ⊔ C),
(λb. {a | a ∈ B ⊔ C ∧ SPOr A f g (INL b) a})⟨B⟩,
(λc. {a | a ∈ B ⊔ C ∧ SPOr A f g (INR c) a})⟨C⟩)
- SPO_pimg_def
-
⊢ (∀A f g x. SPO_pimg A f g (INL x) = PREIMAGE f {x} ∩ A) ∧
∀A f g y. SPO_pimg A f g (INR y) = PREIMAGE g {y} ∩ A
- SPOr_def
-
⊢ ∀A f g.
SPOr A f g =
(λx y. (∃a. a ∈ A ∧ (x = INL (f a)) ∧ (y = INR (g a))) ∨ (x = y))^=
- cardgt_def
-
⊢ ∀n. cardgt (:α) n ⇔ FINITE 𝕌(:α) ⇒ n < CARD 𝕌(:α)
- eps_def
-
⊢ ∀R A a. eps R A a = if a ∈ A then {b | R a b ∧ b ∈ A} else ARB
- kernel_def
-
⊢ ∀A f x y. kernel A f x y ⇔ x ∈ A ∧ y ∈ A ∧ (f x = f y)
- restr_def
-
⊢ ∀f s. f⟨s⟩ = (λx. if x ∈ s then f x else ARB)
- shom_def
-
⊢ ∀f A B. shom f A B ⇔ (∀a. a ∈ A ⇒ f a ∈ B) ∧ ∀a. a ∉ A ⇒ (f a = ARB)
- span_def
-
⊢ ∀A f g b d. span A f g b d ⇔ ∃a. a ∈ A ∧ (b = f a) ∧ (d = g a)
- Delta_IMAGE
-
⊢ Δ (IMAGE f A) = RIMAGE f A (Δ A)
- Delta_INTER
-
⊢ Δ (s ∩ t) = Δ s ∩ᵣ Δ t
- Gr_Id
-
⊢ Gr (λx. x) A = Δ A
- Gr_restr
-
⊢ Gr f⟨A⟩ A = Gr f A
- IN_UNCURRY
-
⊢ (a,b) ∈ Rᴾ ⇔ R a b
- RIMAGE_Gr
-
⊢ RIMAGE f A R = Gr f A ∘ᵣ R ∘ᵣ (Gr f A)ᵀ
- RINV_IMAGE_Gr
-
⊢ RINV_IMAGE f A R = (Gr f A)ᵀ ∘ᵣ R ∘ᵣ Gr f A
- SPOr_REFL
-
⊢ SPOr A f g x x
- SPOr_lemma
-
⊢ ((j1 ∘ f)⟨A⟩ = (j2 ∘ g)⟨A⟩) ⇒
(∀b1 b2. SPOr A f g (INL b1) (INL b2) ⇒ (j1 b1 = j1 b2)) ∧
(∀b c. SPOr A f g (INL b) (INR c) ⇒ (j1 b = j2 c)) ∧
(∀b' c'. SPOr A f g (INR c') (INL b') ⇒ (j1 b' = j2 c')) ∧
∀c1 c2. SPOr A f g (INR c1) (INR c2) ⇒ (j2 c1 = j2 c2)
- Spushout_def
-
⊢ Spushout A B C' f g (P,i1,i2) (:δ) ⇔
shom f A B ∧ shom g A C' ∧ shom i1 B P ∧ shom i2 C' P ∧
((i1 ∘ f)⟨A⟩ = (i2 ∘ g)⟨A⟩) ∧
∀Q j1 j2.
shom j1 B Q ∧ shom j2 C' Q ∧ ((j1 ∘ f)⟨A⟩ = (j2 ∘ g)⟨A⟩) ⇒
∃!u. shom u P Q ∧ ((u ∘ i1)⟨B⟩ = j1) ∧ ((u ∘ i2)⟨C'⟩ = j2)
- Spushout_ind
-
⊢ ∀P'.
(∀A B C f g P i1 i2. P' A B C f g (P,i1,i2) (:δ)) ⇒
∀v v1 v2 v3 v4 v5 v6 v7 v8. P' v v1 v2 v3 v4 (v5,v6,v7) v8
- Spushout_quotient
-
⊢ shom f A B ∧ shom g A C ⇒ Spushout A B C f g (SPO A B C f g) (:δ)
- Spushout_sym
-
⊢ Spushout A B C f g (P,p1,p2) (:δ) ⇒ Spushout A C B g f (P,p2,p1) (:δ)
- Spushout_transfer
-
⊢ Spushout A B C f g (P,i1,i2) (:δ) ∧ INJ h 𝕌(:ε) 𝕌(:δ) ⇒
Spushout A B C f g (P,i1,i2) (:ε)
- Spushouts_iso
-
⊢ Spushout A B C f g (P,i1,i2) (:ε) ∧ Spushout A B C f g (Q,j1,j2) (:δ) ∧
cardgt (:δ) 1 ∧ cardgt (:ε) 1 ⇒
∃H. BIJ H P Q ∧ ((H ∘ i1)⟨B⟩ = j1) ∧ ((H ∘ i2)⟨C⟩ = j2)
- cardgt0
-
⊢ cardgt (:α) 0
- cardgt1_INJ_bool
-
⊢ cardgt (:α) 1 ⇔ ∃bf. INJ bf {T; F} 𝕌(:α)
- eps_partition
-
⊢ a ∈ A ⇒ eps R A a ∈ partition R A
- kernel_graph
-
⊢ kernel A f = (Gr f A)ᵀ ∘ᵣ Gr f A
- oID
-
⊢ (f ∘ (λx. x) = f) ∧ ((λx. x) ∘ f = f)
- restr_EMPTY
-
⊢ f⟨∅⟩ = K ARB
- restr_applies
-
⊢ x ∈ A ⇒ (f⟨A⟩ x = f x)
- restr_cases
-
⊢ (f⟨A⟩ x = g x) ⇔ x ∈ A ∧ (f x = g x) ∨ x ∉ A ∧ (g x = ARB)
- restr_restr_o
-
⊢ (f ∘ g⟨A⟩)⟨A⟩ = (f ∘ g)⟨A⟩
- shom_into_EMPTY
-
⊢ shom f A ∅ ⇔ (A = ∅) ∧ (f = K ARB)
- shom_outof_EMPTY
-
⊢ shom f ∅ A ⇔ (f = K ARB)
- shoms_exist
-
⊢ ∀A B. B ≠ ∅ ⇒ ∃h. shom h A B
- symmetric_SPOr
-
⊢ symmetric (SPOr A f g)
- transitive_SPOr
-
⊢ transitive (SPOr A f g)
- unit_pushout
-
⊢ shom f A B ∧ shom g A C ∧ A ≠ ∅ ⇒
Spushout A B C f g ({()},(K ())⟨B⟩,(K ())⟨C⟩) (:unit)