Theory "toto"

Parents     wot   ternaryComparisons

Signature

Type Arity
num_dt 0
toto 1
Constant Type
ListOrd :α toto -> α list -> α list -> ordering
StrongLinearOrder_of_TO :(α -> α -> ordering) -> α -> α -> bool
TO :(α -> α -> ordering) -> α toto
TO_inv :(α -> α -> ordering) -> α -> α -> ordering
TO_of_LinearOrder :(α -> α -> bool) -> α -> α -> ordering
TotOrd :(α -> α -> ordering) -> bool
WeakLinearOrder_of_TO :(α -> α -> ordering) -> α -> α -> bool
apto :α toto -> α -> α -> ordering
bit1 :num_dt -> num_dt
bit2 :num_dt -> num_dt
charOrd :char -> char -> ordering
charto :char toto
imageOrd :(α -> γ) -> (γ -> γ -> ordering) -> α -> α -> ordering
lexTO :(α -> α -> ordering) -> (β -> β -> ordering) -> α # β -> α # β -> ordering
lextoto :α toto -> β toto -> (α # β) toto
listorder :(α -> α -> bool) -> α list -> α list -> bool
listoto :α toto -> α list toto
numOrd :num -> num -> ordering
num_dtOrd :num_dt -> num_dt -> ordering
num_dt_CASE :num_dt -> α -> (num_dt -> α) -> (num_dt -> α) -> α
num_dt_size :num_dt -> num
num_to_dt :num -> num_dt
numto :num toto
qk_numOrd :num -> num -> ordering
qk_numto :num toto
stringto :string toto
toto_inv :α toto -> α toto
toto_of_LinearOrder :(α -> α -> bool) -> α toto
zer :num_dt

Definitions

ListOrd
⊢ ∀c. ListOrd c =
      TO_of_LinearOrder (listorder (StrongLinearOrder_of_TO (apto c)))
StrongLinearOrder_of_TO
⊢ ∀c x y.
    StrongLinearOrder_of_TO c x y ⇔
    case c x y of Less => T | Equal => F | Greater => F
TO_inv
⊢ ∀c x y. TO_inv c x y = c y x
TO_of_LinearOrder
⊢ ∀r x y.
    TO_of_LinearOrder r x y =
    if x = y then Equal else if r x y then Less else Greater
TotOrd
⊢ ∀c. TotOrd c ⇔
      (∀x y. (c x y = Equal) ⇔ (x = y)) ∧
      (∀x y. (c x y = Greater) ⇔ (c y x = Less)) ∧
      ∀x y z. (c x y = Less) ∧ (c y z = Less) ⇒ (c x z = Less)
WeakLinearOrder_of_TO
⊢ ∀c x y.
    WeakLinearOrder_of_TO c x y ⇔
    case c x y of Less => T | Equal => T | Greater => F
charOrd
⊢ ∀a b. charOrd a b = numOrd (ORD a) (ORD b)
charto
⊢ charto = TO charOrd
imageOrd
⊢ ∀f cp a b. imageOrd f cp a b = cp (f a) (f b)
lexTO
⊢ ∀R V.
    R lexTO V =
    TO_of_LinearOrder
      (StrongLinearOrder_of_TO R LEX StrongLinearOrder_of_TO V)
lextoto
⊢ ∀c v. c lextoto v = TO (apto c lexTO apto v)
listoto
⊢ ∀c. listoto c = TO (ListOrd c)
numOrd
⊢ numOrd = TO_of_LinearOrder $<
num_dt_TY_DEF
⊢ ∃rep.
    TYPE_DEFINITION
      (λa0.
           ∀ $var$('num_dt').
             (∀a0.
                (a0 = ind_type$CONSTR 0 ARB (λn. ind_type$BOTTOM)) ∨
                (∃a. (a0 =
                      (λa.
                           ind_type$CONSTR (SUC 0) ARB
                             (ind_type$FCONS a (λn. ind_type$BOTTOM))) a) ∧
                     $var$('num_dt') a) ∨
                (∃a. (a0 =
                      (λa.
                           ind_type$CONSTR (SUC (SUC 0)) ARB
                             (ind_type$FCONS a (λn. ind_type$BOTTOM))) a) ∧
                     $var$('num_dt') a) ⇒
                $var$('num_dt') a0) ⇒
             $var$('num_dt') a0) rep
num_dt_case_def
⊢ (∀v f f1. num_dt_CASE zer v f f1 = v) ∧
  (∀a v f f1. num_dt_CASE (bit1 a) v f f1 = f a) ∧
  ∀a v f f1. num_dt_CASE (bit2 a) v f f1 = f1 a
num_dt_size_def
⊢ (num_dt_size zer = 0) ∧ (∀a. num_dt_size (bit1 a) = 1 + num_dt_size a) ∧
  ∀a. num_dt_size (bit2 a) = 1 + num_dt_size a
num_to_dt_primitive
⊢ num_to_dt =
  WFREC
    (@R. WF R ∧ (∀n. n ≠ 0 ∧ ODD n ⇒ R (DIV2 (n − 1)) n) ∧
         ∀n. n ≠ 0 ∧ ¬ODD n ⇒ R (DIV2 (n − 2)) n)
    (λnum_to_dt a.
         I
           (if a = 0 then zer
            else if ODD a then bit1 (num_to_dt (DIV2 (a − 1)))
            else bit2 (num_to_dt (DIV2 (a − 2)))))
numto
⊢ numto = TO numOrd
qk_numOrd_def
⊢ ∀m n. qk_numOrd m n = num_dtOrd (num_to_dt m) (num_to_dt n)
qk_numto
⊢ qk_numto = TO qk_numOrd
stringto
⊢ stringto = listoto charto
to_bij
⊢ (∀a. TO (apto a) = a) ∧ ∀r. TotOrd r ⇔ (apto (TO r) = r)
toto_TY_DEF
⊢ ∃rep. TYPE_DEFINITION TotOrd rep
toto_inv
⊢ ∀c. toto_inv c = TO (TO_inv (apto c))
toto_of_LinearOrder
⊢ ∀r. toto_of_LinearOrder r = TO (TO_of_LinearOrder r)


Theorems

LEX_ALT
⊢ ∀R U c d.
    (R LEX U) c d ⇔ R (FST c) (FST d) ∨ (FST c = FST d) ∧ U (SND c) (SND d)
ListOrd_THM
⊢ ∀c. (ListOrd c [] [] = Equal) ∧ (∀b y. ListOrd c [] (b::y) = Less) ∧
      (∀a x. ListOrd c (a::x) [] = Greater) ∧
      ∀a x b y.
        ListOrd c (a::x) (b::y) =
        case apto c a b of
          Less => Less
        | Equal => ListOrd c x y
        | Greater => Greater
NOT_EQ_LESS_IMP
⊢ ∀cmp x y. apto cmp x y ≠ Less ⇒ (x = y) ∨ (apto cmp y x = Less)
SLO_LEX
⊢ ∀R V.
    StrongLinearOrder R ∧ StrongLinearOrder V ⇒ StrongLinearOrder (R LEX V)
SLO_listorder
⊢ ∀V. StrongLinearOrder V ⇒ StrongLinearOrder (listorder V)
SPLIT_PAIRS
⊢ ∀x y. (x = y) ⇔ (FST x = FST y) ∧ (SND x = SND y)
STRORD_SLO
⊢ ∀R. WeakLinearOrder R ⇒ StrongLinearOrder (STRORD R)
StrongLinearOrderExists
⊢ ∃R. StrongLinearOrder R
StrongLinearOrder_LESS
⊢ StrongLinearOrder $<
StrongLinearOrder_of_TO_TO_of_LinearOrder
⊢ ∀R. irreflexive R ⇒ (StrongLinearOrder_of_TO (TO_of_LinearOrder R) = R)
StrongOrder_ALT
⊢ ∀Z. StrongOrder Z ⇔ irreflexive Z ∧ transitive Z
Strong_Strong_of
⊢ ∀c. StrongLinearOrder (StrongLinearOrder_of_TO (apto c))
Strong_Strong_of_TO
⊢ ∀c. TotOrd c ⇒ StrongLinearOrder (StrongLinearOrder_of_TO c)
Strong_toto_inv
⊢ ∀c. StrongLinearOrder_of_TO (apto (toto_inv c)) =
      (StrongLinearOrder_of_TO (apto c))ᵀ
Strong_toto_thm
⊢ ∀r. StrongLinearOrder r ⇒
      (StrongLinearOrder_of_TO (apto (toto_of_LinearOrder r)) = r)
Strongof_toto_STRORD
⊢ ∀c. StrongLinearOrder_of_TO (apto c) =
      STRORD (WeakLinearOrder_of_TO (apto c))
TO_11
⊢ ∀r r'. TotOrd r ⇒ TotOrd r' ⇒ ((TO r = TO r') ⇔ (r = r'))
TO_ListOrd
⊢ ∀c. TotOrd (ListOrd c)
TO_antisym
⊢ ∀c. TotOrd c ⇒ ∀x y. (c x y = Greater) ⇔ (c y x = Less)
TO_apto_ID
⊢ ∀a. TO (apto a) = a
TO_apto_TO_ID
⊢ ∀r. TotOrd r ⇔ (apto (TO r) = r)
TO_apto_TO_IMP
⊢ ∀r. TotOrd r ⇒ (apto (TO r) = r)
TO_charOrd
⊢ TotOrd charOrd
TO_cpn_eqn
⊢ ∀c. TotOrd c ⇒
      (∀x y. (c x y = Less) ⇒ x ≠ y) ∧ (∀x y. (c x y = Greater) ⇒ x ≠ y) ∧
      ∀x y. (c x y = Equal) ⇒ (x = y)
TO_equal_eq
⊢ ∀c. TotOrd c ⇒ ∀x y. (c x y = Equal) ⇔ (x = y)
TO_exists
⊢ ∃x. TotOrd x
TO_injection
⊢ ∀cp. TotOrd cp ⇒ ∀f. ONE_ONE f ⇒ TotOrd (imageOrd f cp)
TO_inv_Ord
⊢ ∀r. TO_of_LinearOrder rᵀ = TO_inv (TO_of_LinearOrder r)
TO_inv_TO_inv
⊢ ∀c. TO_inv (TO_inv c) = c
TO_lexTO
⊢ ∀R V. TotOrd R ∧ TotOrd V ⇒ TotOrd (R lexTO V)
TO_numOrd
⊢ TotOrd numOrd
TO_of_LinearOrder_LEX
⊢ ∀R V.
    irreflexive R ∧ irreflexive V ⇒
    (TO_of_LinearOrder (R LEX V) =
     TO_of_LinearOrder R lexTO TO_of_LinearOrder V)
TO_of_greater_ler
⊢ ∀r. StrongLinearOrder r ⇒ ∀x y. (TO_of_LinearOrder r x y = Greater) ⇔ r y x
TO_of_less_rel
⊢ ∀r. StrongLinearOrder r ⇒ ∀x y. (TO_of_LinearOrder r x y = Less) ⇔ r x y
TO_onto
⊢ ∀a. ∃r. (a = TO r) ∧ TotOrd r
TO_qk_numOrd
⊢ TotOrd qk_numOrd
TO_refl
⊢ ∀c. TotOrd c ⇒ ∀x. c x x = Equal
TotOrd_TO_of_LO
⊢ ∀r. LinearOrder r ⇒ TotOrd (TO_of_LinearOrder r)
TotOrd_TO_of_Strong
⊢ ∀r. StrongLinearOrder r ⇒ TotOrd (TO_of_LinearOrder r)
TotOrd_TO_of_Weak
⊢ ∀r. WeakLinearOrder r ⇒ TotOrd (TO_of_LinearOrder r)
TotOrd_apto
⊢ ∀c. TotOrd (apto c)
TotOrd_inv
⊢ ∀c. TotOrd c ⇒ TotOrd (TO_inv c)
Weak_Weak_of
⊢ ∀c. WeakLinearOrder (WeakLinearOrder_of_TO (apto c))
Weak_toto_inv
⊢ ∀c. WeakLinearOrder_of_TO (apto (toto_inv c)) =
      (WeakLinearOrder_of_TO (apto c))ᵀ
Weak_toto_thm
⊢ ∀r. WeakLinearOrder r ⇒
      (WeakLinearOrder_of_TO (apto (toto_of_LinearOrder r)) = r)
all_cpn_distinct
⊢ (Less ≠ Equal ∧ Less ≠ Greater ∧ Equal ≠ Greater) ∧ Equal ≠ Less ∧
  Greater ≠ Less ∧ Greater ≠ Equal
ap_qk_numto_thm
⊢ apto qk_numto = qk_numOrd
apcharto_thm
⊢ apto charto = charOrd
aplextoto
⊢ ∀c v x1 x2 y1 y2.
    apto (c lextoto v) (x1,x2) (y1,y2) =
    case apto c x1 y1 of
      Less => Less
    | Equal => apto v x2 y2
    | Greater => Greater
aplistoto
⊢ ∀c. (apto (listoto c) [] [] = Equal) ∧
      (∀b y. apto (listoto c) [] (b::y) = Less) ∧
      (∀a x. apto (listoto c) (a::x) [] = Greater) ∧
      ∀a x b y.
        apto (listoto c) (a::x) (b::y) =
        case apto c a b of
          Less => Less
        | Equal => apto (listoto c) x y
        | Greater => Greater
apnumto_thm
⊢ apto numto = numOrd
apto_inv
⊢ ∀c. apto (toto_inv c) = TO_inv (apto c)
charOrd_eq_lem
⊢ ∀a b. (numOrd a b = Equal) ⇒ (charOrd (CHR a) (CHR b) = Equal)
charOrd_gt_lem
⊢ ∀a b.
    (numOrd a b = Greater) ⇒
    (a < 256 ⇔ T) ⇒
    (charOrd (CHR a) (CHR b) = Greater)
charOrd_lt_lem
⊢ ∀a b. (numOrd a b = Less) ⇒ (b < 256 ⇔ T) ⇒ (charOrd (CHR a) (CHR b) = Less)
charOrd_thm
⊢ charOrd = TO_of_LinearOrder $<
datatype_num_dt
⊢ DATATYPE (num_dt zer bit1 bit2)
inv_TO
⊢ ∀r. TotOrd r ⇒ (toto_inv (TO r) = TO (TO_inv r))
lexTO_ALT
⊢ ∀R V.
    TotOrd R ∧ TotOrd V ⇒
    ∀(r,u) (r',u').
      (R lexTO V) (r,u) (r',u') =
      case R r r' of Less => Less | Equal => V u u' | Greater => Greater
lexTO_thm
⊢ ∀R V.
    TotOrd R ∧ TotOrd V ⇒
    ∀x y.
      (R lexTO V) x y =
      case R (FST x) (FST y) of
        Less => Less
      | Equal => V (SND x) (SND y)
      | Greater => Greater
listorder
⊢ (∀l V. listorder V l [] ⇔ F) ∧ (∀s m V. listorder V [] (s::m) ⇔ T) ∧
  ∀s r m l V. listorder V (r::l) (s::m) ⇔ V r s ∨ (r = s) ∧ listorder V l m
listorder_ind
⊢ ∀P. (∀V l. P V l []) ∧ (∀V s m. P V [] (s::m)) ∧
      (∀V r l s m. P V l m ⇒ P V (r::l) (s::m)) ⇒
      ∀v v1 v2. P v v1 v2
num_dtOrd
⊢ (num_dtOrd zer zer = Equal) ∧ (∀x. num_dtOrd zer (bit1 x) = Less) ∧
  (∀x. num_dtOrd zer (bit2 x) = Less) ∧
  (∀x. num_dtOrd (bit1 x) zer = Greater) ∧
  (∀x. num_dtOrd (bit2 x) zer = Greater) ∧
  (∀y x. num_dtOrd (bit1 x) (bit2 y) = Less) ∧
  (∀y x. num_dtOrd (bit2 x) (bit1 y) = Greater) ∧
  (∀y x. num_dtOrd (bit1 x) (bit1 y) = num_dtOrd x y) ∧
  ∀y x. num_dtOrd (bit2 x) (bit2 y) = num_dtOrd x y
num_dtOrd_ind
⊢ ∀P. P zer zer ∧ (∀x. P zer (bit1 x)) ∧ (∀x. P zer (bit2 x)) ∧
      (∀x. P (bit1 x) zer) ∧ (∀x. P (bit2 x) zer) ∧
      (∀x y. P (bit1 x) (bit2 y)) ∧ (∀x y. P (bit2 x) (bit1 y)) ∧
      (∀x y. P x y ⇒ P (bit1 x) (bit1 y)) ∧
      (∀x y. P x y ⇒ P (bit2 x) (bit2 y)) ⇒
      ∀v v1. P v v1
num_dt_11
⊢ (∀a a'. (bit1 a = bit1 a') ⇔ (a = a')) ∧
  ∀a a'. (bit2 a = bit2 a') ⇔ (a = a')
num_dt_Axiom
⊢ ∀f0 f1 f2. ∃fn.
    (fn zer = f0) ∧ (∀a. fn (bit1 a) = f1 a (fn a)) ∧
    ∀a. fn (bit2 a) = f2 a (fn a)
num_dt_case_cong
⊢ ∀M M' v f f1.
    (M = M') ∧ ((M' = zer) ⇒ (v = v')) ∧ (∀a. (M' = bit1 a) ⇒ (f a = f' a)) ∧
    (∀a. (M' = bit2 a) ⇒ (f1 a = f1' a)) ⇒
    (num_dt_CASE M v f f1 = num_dt_CASE M' v' f' f1')
num_dt_case_eq
⊢ (num_dt_CASE x v f f1 = v') ⇔
  (x = zer) ∧ (v = v') ∨ (∃n. (x = bit1 n) ∧ (f n = v')) ∨
  ∃n. (x = bit2 n) ∧ (f1 n = v')
num_dt_distinct
⊢ (∀a. zer ≠ bit1 a) ∧ (∀a. zer ≠ bit2 a) ∧ ∀a' a. bit1 a ≠ bit2 a'
num_dt_induction
⊢ ∀P. P zer ∧ (∀n. P n ⇒ P (bit1 n)) ∧ (∀n. P n ⇒ P (bit2 n)) ⇒ ∀n. P n
num_dt_nchotomy
⊢ ∀nn. (nn = zer) ∨ (∃n. nn = bit1 n) ∨ ∃n. nn = bit2 n
numeralOrd
⊢ ∀x y.
    (numOrd ZERO ZERO = Equal) ∧ (numOrd ZERO (BIT1 y) = Less) ∧
    (numOrd ZERO (BIT2 y) = Less) ∧ (numOrd (BIT1 x) ZERO = Greater) ∧
    (numOrd (BIT2 x) ZERO = Greater) ∧
    (numOrd (BIT1 x) (BIT1 y) = numOrd x y) ∧
    (numOrd (BIT2 x) (BIT2 y) = numOrd x y) ∧
    (numOrd (BIT1 x) (BIT2 y) =
     case numOrd x y of Less => Less | Equal => Less | Greater => Greater) ∧
    (numOrd (BIT2 x) (BIT1 y) =
     case numOrd x y of Less => Less | Equal => Greater | Greater => Greater)
onto_apto
⊢ ∀r. TotOrd r ⇔ ∃a. r = apto a
pre_aplextoto
⊢ ∀c v x y.
    apto (c lextoto v) x y =
    case apto c (FST x) (FST y) of
      Less => Less
    | Equal => apto v (SND x) (SND y)
    | Greater => Greater
qk_numeralOrd
⊢ ∀x y.
    (qk_numOrd ZERO ZERO = Equal) ∧ (qk_numOrd ZERO (BIT1 y) = Less) ∧
    (qk_numOrd ZERO (BIT2 y) = Less) ∧ (qk_numOrd (BIT1 x) ZERO = Greater) ∧
    (qk_numOrd (BIT2 x) ZERO = Greater) ∧
    (qk_numOrd (BIT1 x) (BIT1 y) = qk_numOrd x y) ∧
    (qk_numOrd (BIT2 x) (BIT2 y) = qk_numOrd x y) ∧
    (qk_numOrd (BIT1 x) (BIT2 y) = Less) ∧
    (qk_numOrd (BIT2 x) (BIT1 y) = Greater)
totoEEtrans
⊢ ∀c x y z.
    ((apto c x y = Equal) ∧ (apto c y z = Equal) ⇒ (apto c x z = Equal)) ∧
    ((apto c x y = Equal) ∧ (apto c z y = Equal) ⇒ (apto c x z = Equal))
totoELtrans
⊢ ∀c x y z. (apto c x y = Equal) ∧ (apto c y z = Less) ⇒ (apto c x z = Less)
totoGGtrans
⊢ ∀c x y z.
    (apto c y x = Greater) ∧ (apto c z y = Greater) ⇒ (apto c x z = Less)
totoGLtrans
⊢ ∀c x y z. (apto c y x = Greater) ∧ (apto c y z = Less) ⇒ (apto c x z = Less)
totoLEtrans
⊢ ∀c x y z. (apto c x y = Less) ∧ (apto c y z = Equal) ⇒ (apto c x z = Less)
totoLGtrans
⊢ ∀c x y z. (apto c x y = Less) ∧ (apto c z y = Greater) ⇒ (apto c x z = Less)
totoLLtrans
⊢ ∀c x y z. (apto c x y = Less) ∧ (apto c y z = Less) ⇒ (apto c x z = Less)
toto_Strong_thm
⊢ ∀c. toto_of_LinearOrder (StrongLinearOrder_of_TO (apto c)) = c
toto_Weak_thm
⊢ ∀c. toto_of_LinearOrder (WeakLinearOrder_of_TO (apto c)) = c
toto_antisym
⊢ ∀c x y. (apto c x y = Greater) ⇔ (apto c y x = Less)
toto_cpn_eqn
⊢ (∀c x y. (apto c x y = Equal) ⇒ (x = y)) ∧
  (∀c x y. (apto c x y = Less) ⇒ x ≠ y) ∧
  ∀c x y. (apto c x y = Greater) ⇒ x ≠ y
toto_equal_eq
⊢ ∀c x y. (apto c x y = Equal) ⇔ (x = y)
toto_equal_imp
⊢ ∀cmp phi.
    LinearOrder phi ∧ (cmp = toto_of_LinearOrder phi) ⇒
    ∀x y. ((x = y) ⇔ T) ⇒ (apto cmp x y = Equal)
toto_equal_imp_eq
⊢ ∀c x y. (apto c x y = Equal) ⇒ (x = y)
toto_equal_sym
⊢ ∀c x y. (apto c x y = Equal) ⇔ (apto c y x = Equal)
toto_glneq
⊢ (∀c x y. (apto c x y = Less) ⇒ x ≠ y) ∧
  ∀c x y. (apto c x y = Greater) ⇒ x ≠ y
toto_inv_toto_inv
⊢ ∀c. toto_inv (toto_inv c) = c
toto_not_less_refl
⊢ ∀cmp h. (apto cmp h h = Less) ⇔ F
toto_refl
⊢ ∀c x. apto c x x = Equal
toto_swap_cases
⊢ ∀c x y.
    apto c y x =
    case apto c x y of Less => Greater | Equal => Equal | Greater => Less
toto_thm
⊢ ∀c. (∀x y. (apto c x y = Equal) ⇔ (x = y)) ∧
      (∀x y. (apto c x y = Greater) ⇔ (apto c y x = Less)) ∧
      ∀x y z. (apto c x y = Less) ∧ (apto c y z = Less) ⇒ (apto c x z = Less)
toto_trans_less
⊢ (∀c x y z. (apto c x y = Less) ∧ (apto c y z = Less) ⇒ (apto c x z = Less)) ∧
  (∀c x y z.
     (apto c x y = Less) ∧ (apto c z y = Greater) ⇒ (apto c x z = Less)) ∧
  (∀c x y z.
     (apto c y x = Greater) ∧ (apto c z y = Greater) ⇒ (apto c x z = Less)) ∧
  (∀c x y z.
     (apto c y x = Greater) ∧ (apto c y z = Less) ⇒ (apto c x z = Less)) ∧
  (∀c x y z. (apto c x y = Less) ∧ (apto c y z = Equal) ⇒ (apto c x z = Less)) ∧
  ∀c x y z. (apto c x y = Equal) ∧ (apto c y z = Less) ⇒ (apto c x z = Less)
toto_unequal_imp
⊢ ∀cmp phi.
    LinearOrder phi ∧ (cmp = toto_of_LinearOrder phi) ⇒
    ∀x y.
      ((x = y) ⇔ F) ⇒
      if phi x y then apto cmp x y = Less else apto cmp x y = Greater
trichotomous_ALT
⊢ ∀R. trichotomous R ⇔ ∀x y. ¬R x y ∧ ¬R y x ⇒ (x = y)