- ALL_IFF
-
⊢ bitotal AB ⇒ ((AB |==> $<=>) |==> $<=>) $! $!
- ALL_surj_RDOM
-
⊢ surj AB ⇒ ((AB |==> $<=>) |==> $<=>) (RES_FORALL (RDOM AB)) $!
- ALL_surj_iff_imp
-
⊢ surj AB ⇒ ((AB |==> $<=>) |==> $==>) $! $!
- ALL_surj_imp_imp
-
⊢ surj AB ⇒ ((AB |==> $==>) |==> $==>) $! $!
- ALL_total_RRANGE
-
⊢ total AB ⇒ ((AB |==> $<=>) |==> $<=>) $! (RES_FORALL (RRANGE AB))
- ALL_total_cimp_cimp
-
⊢ total AB ⇒ ((AB |==> flip $==>) |==> flip $==>) $! $!
- ALL_total_iff_cimp
-
⊢ total AB ⇒ ((AB |==> $<=>) |==> flip $==>) $! $!
- COMMA_CORRECT
-
⊢ (AB |==> CD |==> AB ### CD) $, $,
- EQ_bi_unique
-
⊢ bi_unique AB ⇒ (AB |==> AB |==> $<=>) $= $=
- EXISTS_IFF_RDOM
-
⊢ surj AB ⇒ ((AB |==> $<=>) |==> $<=>) (RES_EXISTS (RDOM AB)) $?
- EXISTS_IFF_RRANGE
-
⊢ total AB ⇒ ((AB |==> $<=>) |==> $<=>) $? (RES_EXISTS (RRANGE AB))
- EXISTS_bitotal
-
⊢ bitotal AB ⇒ ((AB |==> $<=>) |==> $<=>) $? $?
- EXISTS_surj_cimp_cimp
-
⊢ surj AB ⇒ ((AB |==> flip $==>) |==> flip $==>) $? $?
- EXISTS_surj_iff_cimp
-
⊢ surj AB ⇒ ((AB |==> $<=>) |==> flip $==>) $? $?
- EXISTS_total_iff_imp
-
⊢ total AB ⇒ ((AB |==> $<=>) |==> $==>) $? $?
- EXISTS_total_imp_imp
-
⊢ total AB ⇒ ((AB |==> $==>) |==> $==>) $? $?
- FST_CORRECT
-
⊢ (AB ### CD |==> AB) FST FST
- FUN_REL_COMB
-
⊢ (AB |==> CD) f g ∧ AB a b ⇒ CD (f a) (g b)
- FUN_REL_EQ2
-
⊢ $= |==> $= = $=
- FUN_REL_IFF_IMP
-
⊢ (AB |==> $<=>) P Q ⇒ (AB |==> $==>) P Q ∧ (AB |==> flip $==>) P Q
- LIST_REL_right_unique
-
⊢ right_unique AB ⇒ right_unique (LIST_REL AB)
- LIST_REL_surj
-
⊢ surj AB ⇒ surj (LIST_REL AB)
- LIST_REL_total
-
⊢ total AB ⇒ total (LIST_REL AB)
- PAIRU_COMMA
-
⊢ (AB |==> $= |==> PAIRU AB) $, K
- PAIRU_def
-
⊢ PAIRU AB (a,()) b = AB a b
- PAIRU_ind
-
⊢ ∀P. (∀AB a b. P AB (a,()) b) ⇒ ∀v v1 v2 v3. P v (v1,v2) v3
- RDOM_EQ
-
⊢ RDOM $= = K T
- RRANGE_EQ
-
⊢ RRANGE $= = K T
- SND_CORRECT
-
⊢ (AB ### CD |==> CD) SND SND
- UPAIR_COMMA
-
⊢ ($= |==> AB |==> UPAIR AB) $, (K I)
- UPAIR_def
-
⊢ UPAIR AB ((),a) b = AB a b
- UPAIR_ind
-
⊢ ∀P. (∀AB a b. P AB ((),a) b) ⇒ ∀v v1 v2 v3. P v (v1,v2) v3
- UREL_EQ
-
⊢ () = ()
- bi_unique_EQ
-
⊢ bi_unique $=
- bi_unique_implied
-
⊢ left_unique r ∧ right_unique r ⇒ bi_unique r
- bitotal_EQ
-
⊢ bitotal $=
- bitotal_implied
-
⊢ total r ∧ surj r ⇒ bitotal r
- cimp_disj
-
⊢ (flip $==> |==> flip $==> |==> flip $==>) $\/ $\/
- cimp_imp
-
⊢ ($==> |==> flip $==> |==> flip $==>) $==> $==>
- eq_equalityp
-
⊢ equalityp $=
- eq_imp
-
⊢ ($<=> |==> $<=> |==> $<=>) $==> $==>
- equalityp_FUN_REL
-
⊢ equalityp AB ∧ equalityp CD ⇒ equalityp (AB |==> CD)
- equalityp_LIST_REL
-
⊢ equalityp AB ⇒ equalityp (LIST_REL AB)
- equalityp_PAIR_REL
-
⊢ equalityp AB ∧ equalityp CD ⇒ equalityp (AB ### CD)
- equalityp_applied
-
⊢ equalityp A ⇒ A x x
- imp_conj
-
⊢ ($==> |==> $==> |==> $==>) $/\ $/\
- imp_disj
-
⊢ ($==> |==> $==> |==> $==>) $\/ $\/
- left_unique_EQ
-
⊢ left_unique $=
- right_unique_EQ
-
⊢ right_unique $=
- surj_EQ
-
⊢ surj $=
- surj_sets
-
⊢ surj AB ∧ right_unique AB ⇒ surj (AB |==> $<=>)
- total_EQ
-
⊢ total $=
- total_total_sets
-
⊢ total AB ∧ left_unique AB ⇒ total (AB |==> $<=>)