Theory "transfer"

Parents     indexedLists   patternMatches

Signature

Constant Type
FUN_REL :(α -> β -> bool) -> (γ -> δ -> bool) -> (α -> γ) -> (β -> δ) -> bool
PAIRU :(β -> γ -> α) -> β # unit -> γ -> α
PAIR_REL :(α -> β -> bool) -> (γ -> δ -> bool) -> α # γ -> β # δ -> bool
UPAIR :(β -> γ -> α) -> unit # β -> γ -> α
bi_unique :(α -> β -> bool) -> bool
bitotal :(α -> β -> bool) -> bool
equalityp :(α -> α -> bool) -> bool
left_unique :(α -> β -> bool) -> bool
right_unique :(α -> β -> bool) -> bool
surj :(α -> β -> bool) -> bool
total :(α -> β -> bool) -> bool

Definitions

FUN_REL_def
⊢ ∀AB CD f g. (AB |==> CD) f g ⇔ ∀a b. AB a b ⇒ CD (f a) (g b)
PAIR_REL_def
⊢ ∀AB CD a c b d. (AB ### CD) (a,c) (b,d) ⇔ AB a b ∧ CD c d
bi_unique_def
⊢ ∀R. bi_unique R ⇔ left_unique R ∧ right_unique R
bitotal_def
⊢ ∀R. bitotal R ⇔ total R ∧ surj R
equalityp_def
⊢ ∀A. equalityp A ⇔ (A = $=)
left_unique_def
⊢ ∀R. left_unique R ⇔ ∀a1 a2 b. R a1 b ∧ R a2 b ⇒ (a1 = a2)
right_unique_def
⊢ ∀R. right_unique R ⇔ ∀a b1 b2. R a b1 ∧ R a b2 ⇒ (b1 = b2)
surj_def
⊢ ∀R. surj R ⇔ ∀y. ∃x. R x y
total_def
⊢ ∀R. total R ⇔ ∀x. ∃y. R x y


Theorems

ALL_IFF
⊢ bitotal AB ⇒ ((AB |==> $<=>) |==> $<=>) $! $!
ALL_surj_RDOM
⊢ surj AB ⇒ ((AB |==> $<=>) |==> $<=>) (RES_FORALL (RDOM AB)) $!
ALL_surj_iff_imp
⊢ surj AB ⇒ ((AB |==> $<=>) |==> $==>) $! $!
ALL_surj_imp_imp
⊢ surj AB ⇒ ((AB |==> $==>) |==> $==>) $! $!
ALL_total_RRANGE
⊢ total AB ⇒ ((AB |==> $<=>) |==> $<=>) $! (RES_FORALL (RRANGE AB))
ALL_total_cimp_cimp
⊢ total AB ⇒ ((AB |==> flip $==>) |==> flip $==>) $! $!
ALL_total_iff_cimp
⊢ total AB ⇒ ((AB |==> $<=>) |==> flip $==>) $! $!
COMMA_CORRECT
⊢ (AB |==> CD |==> AB ### CD) $, $,
EQ_bi_unique
⊢ bi_unique AB ⇒ (AB |==> AB |==> $<=>) $= $=
EXISTS_IFF_RDOM
⊢ surj AB ⇒ ((AB |==> $<=>) |==> $<=>) (RES_EXISTS (RDOM AB)) $?
EXISTS_IFF_RRANGE
⊢ total AB ⇒ ((AB |==> $<=>) |==> $<=>) $? (RES_EXISTS (RRANGE AB))
EXISTS_bitotal
⊢ bitotal AB ⇒ ((AB |==> $<=>) |==> $<=>) $? $?
EXISTS_surj_cimp_cimp
⊢ surj AB ⇒ ((AB |==> flip $==>) |==> flip $==>) $? $?
EXISTS_surj_iff_cimp
⊢ surj AB ⇒ ((AB |==> $<=>) |==> flip $==>) $? $?
EXISTS_total_iff_imp
⊢ total AB ⇒ ((AB |==> $<=>) |==> $==>) $? $?
EXISTS_total_imp_imp
⊢ total AB ⇒ ((AB |==> $==>) |==> $==>) $? $?
FST_CORRECT
⊢ (AB ### CD |==> AB) FST FST
FUN_REL_COMB
⊢ (AB |==> CD) f g ∧ AB a b ⇒ CD (f a) (g b)
FUN_REL_EQ2
⊢ $= |==> $= = $=
FUN_REL_IFF_IMP
⊢ (AB |==> $<=>) P Q ⇒ (AB |==> $==>) P Q ∧ (AB |==> flip $==>) P Q
LIST_REL_right_unique
⊢ right_unique AB ⇒ right_unique (LIST_REL AB)
LIST_REL_surj
⊢ surj AB ⇒ surj (LIST_REL AB)
LIST_REL_total
⊢ total AB ⇒ total (LIST_REL AB)
PAIRU_COMMA
⊢ (AB |==> $= |==> PAIRU AB) $, K
PAIRU_def
⊢ PAIRU AB (a,()) b = AB a b
PAIRU_ind
⊢ ∀P. (∀AB a b. P AB (a,()) b) ⇒ ∀v v1 v2 v3. P v (v1,v2) v3
RDOM_EQ
⊢ RDOM $= = K T
RRANGE_EQ
⊢ RRANGE $= = K T
SND_CORRECT
⊢ (AB ### CD |==> CD) SND SND
UPAIR_COMMA
⊢ ($= |==> AB |==> UPAIR AB) $, (K I)
UPAIR_def
⊢ UPAIR AB ((),a) b = AB a b
UPAIR_ind
⊢ ∀P. (∀AB a b. P AB ((),a) b) ⇒ ∀v v1 v2 v3. P v (v1,v2) v3
UREL_EQ
⊢ () = ()
bi_unique_EQ
⊢ bi_unique $=
bi_unique_implied
⊢ left_unique r ∧ right_unique r ⇒ bi_unique r
bitotal_EQ
⊢ bitotal $=
bitotal_implied
⊢ total r ∧ surj r ⇒ bitotal r
cimp_disj
⊢ (flip $==> |==> flip $==> |==> flip $==>) $\/ $\/
cimp_imp
⊢ ($==> |==> flip $==> |==> flip $==>) $==> $==>
eq_equalityp
⊢ equalityp $=
eq_imp
⊢ ($<=> |==> $<=> |==> $<=>) $==> $==>
equalityp_FUN_REL
⊢ equalityp AB ∧ equalityp CD ⇒ equalityp (AB |==> CD)
equalityp_LIST_REL
⊢ equalityp AB ⇒ equalityp (LIST_REL AB)
equalityp_PAIR_REL
⊢ equalityp AB ∧ equalityp CD ⇒ equalityp (AB ### CD)
equalityp_applied
⊢ equalityp A ⇒ A x x
imp_conj
⊢ ($==> |==> $==> |==> $==>) $/\ $/\
imp_disj
⊢ ($==> |==> $==> |==> $==>) $\/ $\/
left_unique_EQ
⊢ left_unique $=
right_unique_EQ
⊢ right_unique $=
surj_EQ
⊢ surj $=
surj_sets
⊢ surj AB ∧ right_unique AB ⇒ surj (AB |==> $<=>)
total_EQ
⊢ total $=
total_total_sets
⊢ total AB ∧ left_unique AB ⇒ total (AB |==> $<=>)