
Isabelle’s meta-logic

1

Basic constructs

Implication =⇒ (==>)
For separating premises and conclusion of theorems

2

Basic constructs

Implication =⇒ (==>)
For separating premises and conclusion of theorems

Equality ≡ (==)
For definitions

2

Basic constructs

Implication =⇒ (==>)
For separating premises and conclusion of theorems

Equality ≡ (==)
For definitions

Universal quantifier
∧

(!!)
For binding local variables

2

Basic constructs

Implication =⇒ (==>)
For separating premises and conclusion of theorems

Equality ≡ (==)
For definitions

Universal quantifier
∧

(!!)
For binding local variables

Do not use inside HOL formulae

2

Notation

[[A1; . . . ; An]] =⇒ B

abbreviates

A1 =⇒ . . . =⇒ An =⇒ B

3

Notation

[[A1; . . . ; An]] =⇒ B

abbreviates

A1 =⇒ . . . =⇒ An =⇒ B

; ≈ “and”

3

The proof state

1.
∧

x1 . . . xp. [[A1; . . . ; An]] =⇒ B

x1 . . . xp Local constants
A1 . . . An Local assumptions
B Actual (sub)goal

4

Type and function definition in Isabelle/HOL

5

Type definition in Isabelle/HOL

6

Introducing new types

Keywords:
• typedecl : pure declaration
• types : abbreviation
• datatype : recursive datatype

7

typedecl

typedecl name

Introduces new “opaque” type name without definition

8

typedecl

typedecl name

Introduces new “opaque” type name without definition

Example:

typedecl addr — An abstract type of addresses

8

types

types name = τ

Introduces an abbreviation name for type τ

9

types

types name = τ

Introduces an abbreviation name for type τ

Examples:

types
name = string
(’a,’b)foo = ’a list × ’b list

9

types

types name = τ

Introduces an abbreviation name for type τ

Examples:

types
name = string
(’a,’b)foo = ’a list × ’b list

Type abbreviations are expanded immediately after parsing
Not present in internal representation and Isabelle output

9

datatype

10

The example

datatype ’a list = Nil | Cons ’a (’a list)

Properties:

• Types: Nil :: ’a list
Cons :: ’a ⇒ ’a list ⇒ ’a list

• Distinctness: Nil 6= Cons x xs
• Injectivity: (Cons x xs = Cons y ys) = (x = y ∧ xs = ys)

11

The general case

datatype (α1, . . . , αn)τ = C1 τ1,1 . . . τ1,n1

| . . .
| Ck τk,1 . . . τk,nk

• Types: Ci :: τi,1 ⇒ · · · ⇒ τi,ni
⇒ (α1, . . . , αn)τ

• Distinctness: Ci . . . 6= Cj . . . if i 6= j

• Injectivity:
(Ci x1 . . . xni

= Ci y1 . . . yni
) = (x1 = y1 ∧ . . . ∧ xni

= yni
)

12

The general case

datatype (α1, . . . , αn)τ = C1 τ1,1 . . . τ1,n1

| . . .
| Ck τk,1 . . . τk,nk

• Types: Ci :: τi,1 ⇒ · · · ⇒ τi,ni
⇒ (α1, . . . , αn)τ

• Distinctness: Ci . . . 6= Cj . . . if i 6= j

• Injectivity:
(Ci x1 . . . xni

= Ci y1 . . . yni
) = (x1 = y1 ∧ . . . ∧ xni

= yni
)

Distinctness and Injectivity are applied automatically
Induction must be applied explicitly

12

Function definition in Isabelle/HOL

13

Why nontermination can be harmful

How about f x = f x + 1 ?

14

Why nontermination can be harmful

How about f x = f x + 1 ?

Subtract f x on both sides.
=⇒ 0 = 1

14

Why nontermination can be harmful

How about f x = f x + 1 ?

Subtract f x on both sides.
=⇒ 0 = 1

! All functions in HOL must be total !

14

Function definition schemas in Isabelle/HOL

• Non-recursive with definition
No problem

15

Function definition schemas in Isabelle/HOL

• Non-recursive with definition
No problem

• Primitive-recursive with primrec
Terminating by construction

15

Function definition schemas in Isabelle/HOL

• Non-recursive with definition
No problem

• Primitive-recursive with primrec
Terminating by construction

• Well-founded recursion with fun
Automatic termination proof

15

Function definition schemas in Isabelle/HOL

• Non-recursive with definition
No problem

• Primitive-recursive with primrec
Terminating by construction

• Well-founded recursion with fun
Automatic termination proof

• Well-founded recursion with function
User-supplied termination proof

15

definition

16

Definition (non-recursive) by example

definition sq :: nat ⇒ nat where sq n = n * n

17

Definitions: pitfalls

definition prime :: nat ⇒ bool where
prime p = (1 < p ∧ (m dvd p −→ m = 1 ∨ m = p))

18

Definitions: pitfalls

definition prime :: nat ⇒ bool where
prime p = (1 < p ∧ (m dvd p −→ m = 1 ∨ m = p))

Not a definition: free m not on left-hand side

18

Definitions: pitfalls

definition prime :: nat ⇒ bool where
prime p = (1 < p ∧ (m dvd p −→ m = 1 ∨ m = p))

Not a definition: free m not on left-hand side

! Every free variable on the rhs must occur on the lhs !

18

Definitions: pitfalls

definition prime :: nat ⇒ bool where
prime p = (1 < p ∧ (m dvd p −→ m = 1 ∨ m = p))

Not a definition: free m not on left-hand side

! Every free variable on the rhs must occur on the lhs !

prime p = (1 < p ∧ (∀m. m dvd p −→ m = 1 ∨ m = p))

18

Using definitions

Definitions are not used automatically

19

Using definitions

Definitions are not used automatically

Unfolding the definition of sq:

apply (unfold sq_def)

19

primrec

20

The example

primrec app :: ’a list ⇒ ’a list ⇒ ’a list where

app Nil ys = ys |

app (Cons x xs) ys = Cons x (app xs ys)

21

The general case

If τ is a datatype (with constructors C1, . . . , Ck) then
f :: · · · ⇒ τ ⇒ · · · ⇒ τ ′ can be defined by primitive recursion:

f x1 . . . (C1 y1,1 . . . y1,n1
) . . . xp = r1 |

...
f x1 . . . (Ck yk,1 . . . yk,nk

) . . . xp = rk

22

The general case

If τ is a datatype (with constructors C1, . . . , Ck) then
f :: · · · ⇒ τ ⇒ · · · ⇒ τ ′ can be defined by primitive recursion:

f x1 . . . (C1 y1,1 . . . y1,n1
) . . . xp = r1 |

...
f x1 . . . (Ck yk,1 . . . yk,nk

) . . . xp = rk

The recursive calls in ri must be structurally smaller,
i.e. of the form f a1 . . . yi,j . . . ap

22

nat is a datatype

datatype nat = 0 | Suc nat

23

nat is a datatype

datatype nat = 0 | Suc nat

Functions on nat definable by primrec!

primrec f :: nat ⇒ ...
f 0 = ...
f(Suc n) = ... f n ...

23

More predefined types and functions

24

Type option

datatype ’a option = None | Some ’a

25

Type option

datatype ’a option = None | Some ’a

Important application:

. . . ⇒ ’a option ≈ partial function:

None ≈ no result
Some a ≈ result a

25

Type option

datatype ’a option = None | Some ’a

Important application:

. . . ⇒ ’a option ≈ partial function:

None ≈ no result
Some a ≈ result a

Example:
primrec lookup :: ’k ⇒ (’k × ’v) list ⇒ ’v option where

25

Type option

datatype ’a option = None | Some ’a

Important application:

. . . ⇒ ’a option ≈ partial function:

None ≈ no result
Some a ≈ result a

Example:
primrec lookup :: ’k ⇒ (’k × ’v) list ⇒ ’v option where

lookup k [] = None

25

Type option

datatype ’a option = None | Some ’a

Important application:

. . . ⇒ ’a option ≈ partial function:

None ≈ no result
Some a ≈ result a

Example:
primrec lookup :: ’k ⇒ (’k × ’v) list ⇒ ’v option where

lookup k [] = None |
lookup k (x#xs) =

(if fst x = k then Some(snd x) else lookup k xs)

25

case

Datatype values can be taken apart with case expressions:

(case xs of [] ⇒ . . . | y#ys ⇒ ... y ... ys ...)

26

case

Datatype values can be taken apart with case expressions:

(case xs of [] ⇒ . . . | y#ys ⇒ ... y ... ys ...)

Wildcards:
(case xs of [] ⇒ [] | y#_ ⇒ [y])

26

case

Datatype values can be taken apart with case expressions:

(case xs of [] ⇒ . . . | y#ys ⇒ ... y ... ys ...)

Wildcards:
(case xs of [] ⇒ [] | y#_ ⇒ [y])

Nested patterns:
(case xs of [0] ⇒ 0 | [Suc n] ⇒ n | _ ⇒ 2)

26

case

Datatype values can be taken apart with case expressions:

(case xs of [] ⇒ . . . | y#ys ⇒ ... y ... ys ...)

Wildcards:
(case xs of [] ⇒ [] | y#_ ⇒ [y])

Nested patterns:
(case xs of [0] ⇒ 0 | [Suc n] ⇒ n | _ ⇒ 2)

Complicated patterns mean complicated proofs!

26

case

Datatype values can be taken apart with case expressions:

(case xs of [] ⇒ . . . | y#ys ⇒ ... y ... ys ...)

Wildcards:
(case xs of [] ⇒ [] | y#_ ⇒ [y])

Nested patterns:
(case xs of [0] ⇒ 0 | [Suc n] ⇒ n | _ ⇒ 2)

Complicated patterns mean complicated proofs!

Needs () in context

26

Proof by case distinction

If t :: τ and τ is a datatype
apply (case_tac t)

27

Proof by case distinction

If t :: τ and τ is a datatype
apply (case_tac t)

creates k subgoals

t = Ci x1 . . . xp =⇒ . . .

one for each constructor Ci of type τ .

27

Demo: trees

28

fun

From primitive recursion
to arbitrary pattern matching

29

Example: Fibonacchi

fun fib :: nat ⇒ nat where

fib 0 = 0 |
fib (Suc 0) = 1 |
fib (Suc(Suc n)) = fib (n+1) + fib n

30

Example: Separation

fun sep :: ’a ⇒ ’a list ⇒ ’a list where

sep a [] = [] |
sep a [x] = [x] |
sep a (x#y#zs) = x # a # sep a (y#zs)

31

Example: Ackermann

fun ack :: nat ⇒ nat ⇒ nat where

ack 0 n = Suc n |
ack (Suc m) 0 = ack m (Suc 0) |
ack (Suc m) (Suc n) = ack m (ack (Suc m) n)

32

Key features of fun

• Arbitrary pattern matching

33

Key features of fun

• Arbitrary pattern matching
• Order of equations matters

33

Key features of fun

• Arbitrary pattern matching
• Order of equations matters
• Termination must be provable

by lexicographic combination of size measures

33

Size

• size(n::nat) = n

34

Size

• size(n::nat) = n
• size(xs) = length xs

34

Size

• size(n::nat) = n
• size(xs) = length xs
• size counts number of (non-nullary) constructors

34

Lexicographic ordering

Either the first component decreases, or it stays unchanged
and the second component decreases:

35

Lexicographic ordering

Either the first component decreases, or it stays unchanged
and the second component decreases:

(5, 3) > (4, 7) > (4, 6) > (4, 0) > (3, 42) > · · ·

35

Lexicographic ordering

Either the first component decreases, or it stays unchanged
and the second component decreases:

(5, 3) > (4, 7) > (4, 6) > (4, 0) > (3, 42) > · · ·

Similar for tuples:

(5, 6, 3) > (4, 12, 5) > (4, 11, 9) > (4, 11, 8) > · · ·

35

Lexicographic ordering

Either the first component decreases, or it stays unchanged
and the second component decreases:

(5, 3) > (4, 7) > (4, 6) > (4, 0) > (3, 42) > · · ·

Similar for tuples:

(5, 6, 3) > (4, 12, 5) > (4, 11, 9) > (4, 11, 8) > · · ·

Theorem If each component ordering terminates, then
their lexicographic product terminates, too.

35

Ackermann terminates

ack 0 n = Suc n

ack (Suc m) 0 = ack m (Suc 0)

ack (Suc m) (Suc n) = ack m (ack (Suc m) n)

36

Ackermann terminates

ack 0 n = Suc n

ack (Suc m) 0 = ack m (Suc 0)

ack (Suc m) (Suc n) = ack m (ack (Suc m) n)

because the arguments of each recursive call are
lexicographically smaller than the arguments on the lhs.

36

Ackermann terminates

ack 0 n = Suc n

ack (Suc m) 0 = ack m (Suc 0)

ack (Suc m) (Suc n) = ack m (ack (Suc m) n)

because the arguments of each recursive call are
lexicographically smaller than the arguments on the lhs.

Note: order of arguments not important for Isabelle!

36

Computation Induction

If f :: τ ⇒ τ ′ is defined by fun , a special induction schema is
provided to prove P (x) for all x :: τ :

37

Computation Induction

If f :: τ ⇒ τ ′ is defined by fun , a special induction schema is
provided to prove P (x) for all x :: τ :

for each equation f(e) = t,
prove P (e) assuming P (r) for all recursive calls f(r) in t.

37

Computation Induction

If f :: τ ⇒ τ ′ is defined by fun , a special induction schema is
provided to prove P (x) for all x :: τ :

for each equation f(e) = t,
prove P (e) assuming P (r) for all recursive calls f(r) in t.

Induction follows course of (terminating!) computation

37

Computation Induction: Example

fun div2 :: nat ⇒ nat where
div2 0 = 0 |
div2 (Suc 0) = 0 |
div2(Suc(Suc n)) = Suc(div2 n)

38

Computation Induction: Example

fun div2 :: nat ⇒ nat where
div2 0 = 0 |
div2 (Suc 0) = 0 |
div2(Suc(Suc n)) = Suc(div2 n)

; induction rule div2.induct:

P (0) P (Suc 0) P (n) =⇒ P (Suc(Suc n))

P (m)

38

Demo: fun

39

		extcolor {darkblue}{Basic constructs}
		extcolor {darkblue}{Notation}
		extcolor {darkblue}{The proof state}
		extcolor {darkblue}{Introducing new types}
		extcolor {darkblue}{typedecl}
		extcolor {darkblue}{types}
		extcolor {darkblue}{The example}
		extcolor {darkblue}{The general case}
		extcolor {darkblue}{Why nontermination can be harmful}
		extcolor {darkblue}{Function definition schemas in Isabelle/HOL}
		extcolor {darkblue}{Definition (non-recursive) by example}
		extcolor {darkblue}{Definitions: pitfalls}
		extcolor {darkblue}{Using definitions}
		extcolor {darkblue}{The example}
		extcolor {darkblue}{The general case}
		extcolor {darkblue}{nat is a datatype}
		extcolor {darkblue}{Type option}
		extcolor {darkblue}{case}
		extcolor {darkblue}{Proof by case distinction}
		extcolor {darkblue}{Example: Fibonacchi}
		extcolor {darkblue}{Example: Separation}
		extcolor {darkblue}{Example: Ackermann}
		extcolor {darkblue}{Key features of fun}
		extcolor {darkblue}{Size}
		extcolor {darkblue}{Lexicographic ordering}
		extcolor {darkblue}{Ackermann terminates}
		extcolor {darkblue}{Computation Induction}
		extcolor {darkblue}{Computation Induction: Example}

