|Isabelle’s meta-logic



Basic constructs

Implication — (==>)
For separating premises and conclusion of theorems



Basic constructs

Implication — (==>)

For separating premises and conclusion of theorems
Equality = (==)

For definitions



Basic constructs

Implication — (==>)

For separating premises and conclusion of theorems
Equality = (==)

For definitions

Universal quantifier A (! !)
For binding local variables



Basic constructs

Implication — (==>)
For separating premises and conclusion of theorems

Equality = (==)
For definitions

Universal quantifier A (! !)
For binding local variables

Do not use inside HOL formulae
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[A;; ... ;AL ] =B
abbreviates

Al — ... = A,—B

~ and



The proof state

LAXL ... Xp. [A1; ... A, ] =B

X1 ... X, Local constants
A: ... A, Local assumptions
B Actual (sub)goal



Type and function definition in Isabelle/HOL



Type definition in Isabelle/HOL



Introducing new types

Keywords:
typedecl . pure declaration
types : abbreviation
datatype : recursive datatype
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typedecl name
Introduces new “opaque” type name without definition

Example:

typedecl addr — An abstract type of addresses
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types

types name = 71

Introduces an abbreviation name for type

Examples:

types
name = string

('a,’b)foo =’a list x 'b list

Type abbreviations are expanded immediately after parsing
Not present in internal representation and Isabelle output



datatype



The example

datatype 'a list = Nil | Cons ’a (’a list)

Properties:

Types: NIl . alist
Cons :: ’'a='alist = 'alist

Distinctness: Nil # Cons X Xs
Injectivity: (Cons xXxs=Consyys) =(X=Yy A XS =YS)

11



The general case

datatype (a1,...,ap)7 = CiTi1...Tim,

‘ Ck Tk,l---Tk,nk

Types: C Til = " = Tin, = (041, . ,Oén)T
Distinctness: C; ... #C; ... fi#

Injectivity:

(Oz T1...Tp, = zylym) — (1131 = Y1 N\ ...\ Tp, :yni)

12



The general case

datatype (ai1,...,an)7 = C1T11...Tin,
|
|

Ck Tk,l---Tk,nk

Types: i Til = " = Tin, = (041, e ,Oén)T
Distinctness: C; ... #C; ... fi#
Injectivity:

(07;331...:137%: iyl...ym):(ajlzyl/\.../\ajni:yni)

Distinctness and Injectivity are applied automatically
Induction must be applied explicitly

12



Function definition in Isabelle/HOL



Why nontermination can be harmful

How aboutfx=fx+17?
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Why nontermination can be harmful

How aboutfx=fx+17?

Subtract f x on both sides.
—0=1

! All functions in HOL must be total '

14



Function definition schemas in Isabelle/HOL

Non-recursive with definition
No problem
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Function definition schemas in Isabelle/HOL

Non-recursive with definition
No problem

Primitive-recursive with primrec
Terminating by construction

Well-founded recursion with fun
Automatic termination proof

Well-founded recursion with function
User-supplied termination proof

15



definition



Definition (non-recursive) by example

definition sq :: nat = nat where sQNn=n*n

17



Definitions: pitfalls

definition prime :: nat = bool where
primep=(_1L<pA(Mdvdp —m=1vm=p))
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Definitions: pitfalls

definition prime :: nat = bool where
primep=(_1L<pA(Mdvdp —m=1vm=p))

Not a definition: free m not on left-hand side

! Every free variable on the rhs must occur on the |Ihs
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Definitions: pitfalls

definition prime :: nat = bool where
primep=(_1L<pA(Mdvdp —m=1vm=p))

Not a definition: free m not on left-hand side

! Every free variable on the rhs must occur on the |Ihs '

primep=(_1L<pA(VmM. mdvdp—m=1vm=p))



Using definitions

Definitions are not used automatically

19



Using definitions

Definitions are not used automatically

Unfolding the definition of sq:
apply (unfold sq_def)



primrec

20



The example

primrec app :: ’alist = 'a list = ’a list where

app Nil YyS=YyS |
app (Cons x xs) ys = Cons X (app XS ys)



The general case

If 7 IS a datatype (with constructors (1, ..., C;) then
f:---=7=-..-= 7 can be defined by primitive recursion:

fiEl...(Cl y1,1...y1,n1)...a;p E— 7“1‘

f$1(0k yk,l...yk,nk)...xp —= Tr

22



The general case

If 7 IS a datatype (with constructors (1, ..., C;) then
f:---=7=-..-= 7 can be defined by primitive recursion:

f:El...(Cl y1,1...y1,n1)...a:p E— 7“1‘

f$1(0k yk,l...ykjnk)...xp —= Tr

The recursive calls in r; must be structurally smaller,
l.e. of the form fai...yi;...qp

22



nat Is a datatype

datatype nat = 0 | Suc nat

23



nat Is a datatype

datatype nat = 0 | Suc nat

Functions on nat definable by primrec!

primrec f:: nat = ...
fO=..
f(Sucn)=..fn..



More predefined types and functions



Type option

datatype 'a option = None | Some 'a

25
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Type option

datatype 'a option = None | Some ’'a

Important application:

. = 'aoption = partial function:
None =~ no result
Somea ~ resulta

Example:
primrec lookup :: '’k = ('k x 'v) list = 'v option where
lookup k [] = None

25



Type option

datatype 'a option = None | Some ’'a

Important application:

. = 'aoption = partial function:
None =~ no result
Somea =~ resulta
Example:
primrec lookup :: '’k = ('k x 'v) list = 'v option where
lookup k [] = None |
lookup Kk (X#xS) =

(if fst x = k then Some(snd x) else lookup k xs)

25



case

Datatype values can be taken apart with case expressions:

(case xsof[] = ... |y#YyS = ...y ... yS ...)

26
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Datatype values can be taken apart with case expressions:

(case xsof[] = ... |y#YS = ...y ... yS ...)

Wildcards:
(case xsof [| =[] |y#_=[y])

Nested patterns:
(case xsof [0] =0 |[Sucn] =n|_ = 2)

Complicated patterns mean complicated proofs!



case

Datatype values can be taken apart with case expressions:

(case xsof[] = ... |y#YS = ...y ... yS ...)

Wildcards:
(case xsof [| =[] |y#_=[y])

Nested patterns:
(case xsof [0] =0 |[Sucn] =n|_ = 2)

Complicated patterns mean complicated proofs!

Needs () in context



Proof by case distinction

If ¢ .. 7 and 7 Is a datatype
apply (case_tac t)



Proof by case distinction

If ¢ .. 7 and 7 Is a datatype
apply (case_tac t)
creates k subgoals

t:Ciwl...:Cp:...

one for each constructor C; of type .

27



Demo: trees

28



fun

From primitive recursion
to arbitrary pattern matching



Example: Fibonacchi

fun fib :; nat = nat where

fio0O=0 |
fibo (Suc0) =1 |
fib (Suc(Suc n)) =fib (n+1) + fib n



Example: Separation

fun sep ::’a = "alist = ’a list where

sepal]=1] |
sep a[x] =[X] |
sep a (x#y#zs) = X # a # sep a (y#zs)




Example: Ackermann

fun ack :: nat = nat = nat where

ack O n =3ucn |
ack (Sucm) 0 =ack m (Suc 0) |
ack (Suc m) (Suc n) = ack m (ack (Suc m) n)



Key features of fun

Arbitrary pattern matching
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Key features of fun

Arbitrary pattern matching
Order of equations matters
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Key features of fun

 Arbitrary pattern matching
* Order of equations matters

e Termination must be provable
by lexicographic combination of size measures

33



size(n::nat) = n

Size
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size(n::nat) = n
size(xs) = length xs

Size

34



Size

size(n::nat) = n
size(xs) = length xs
size counts number of (non-nullary) constructors

34



Lexicographic ordering

Either the first component decreases, or it stays unchanged
and the second component decreases:
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Lexicographic ordering

Either the first component decreases, or it stays unchanged
and the second component decreases:

(5,3) > (4,7) > (4,6) > (4,0) > (3,42) > - --
Similar for tuples:
(5,6,3) > (4,12,5) > (4,11,9) > (4,11,8) > ---

Theorem If each component ordering terminates, then
their lexicographic product terminates, too.

35



Ackermann terminates

ack O n=Sucn

ack (Suc m) O = ack m (Suc 0)

ack (Suc m) (Suc n) = ack m (ack (Suc m) n)



Ackermann terminates

ack O n=Sucn

ack (Suc m) O = ack m (Suc 0)

ack (Suc m) (Suc n) = ack m (ack (Suc m) n)

because the arguments of each recursive call are
lexicographically smaller than the arguments on the Ihs.
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Ackermann terminates

ack O n=Sucn

ack (Suc m) O = ack m (Suc 0)

ack (Suc m) (Suc n) = ack m (ack (Suc m) n)

because the arguments of each recursive call are
lexicographically smaller than the arguments on the Ihs.

Note: order of arguments not important for Isabelle!

36



Computation Induction

If /:: 7= 7"1s defined by fun, a special induction schema is
provided to prove P(z) for all = :: 7:
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Computation Induction

If /:: 7= 7"1s defined by fun, a special induction schema is
provided to prove P(z) for all = :: 7:

for each equation f(e) =t,
prove P(e) assuming P(r) for all recursive calls f(r) In t.

Induction follows course of (terminating!) computation



Computation Induction: Example

fun div2 :: nat = nat where
div20=0 |

div2 (Suc 0) =0 |
div2(Suc(Suc n)) = Suc(div2 n)

38



Computation Induction: Example

fun div2 :: nat = nat where
div20=0 |

div2 (Suc 0) =0 |
div2(Suc(Suc n)) = Suc(div2 n)

~» Induction rule di v2. 1 nduct:

P(0) P(Suc0) P(n)= P(Suc(Sucn))
P(m)




Demo: fun

39
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