|Isabelle’s meta-logic

Basic constructs

Implication — (==>)
For separating premises and conclusion of theorems

Basic constructs

Implication — (==>)

For separating premises and conclusion of theorems
Equality = (==)

For definitions

Basic constructs

Implication — (==>)

For separating premises and conclusion of theorems
Equality = (==)

For definitions

Universal quantifier A (! !)
For binding local variables

Basic constructs

Implication — (==>)
For separating premises and conclusion of theorems

Equality = (==)
For definitions

Universal quantifier A (! !)
For binding local variables

Do not use inside HOL formulae

Notation

[A;; ... ;AL] =B
abbreviates

Al — ... = A,—B

Notation

[A;; ... ;AL] =B
abbreviates

Al — ... = A,—B

~ and

The proof state

LAXL ... Xp. [A1; ... A,] =B

X1 ... X, Local constants
A: ... A, Local assumptions
B Actual (sub)goal

Type and function definition in Isabelle/HOL

Type definition in Isabelle/HOL

Introducing new types

Keywords:
typedecl . pure declaration
types : abbreviation
datatype : recursive datatype

typedecl

typedecl name

Introduces new “opaque” type name without definition

typedecl

typedecl name
Introduces new “opaque” type name without definition

Example:

typedecl addr — An abstract type of addresses

types

types name = 71

Introduces an abbreviation name for type

types

types name = 71

Introduces an abbreviation name for type

Examples:

types
name = string

('a,’b)foo =’a list x 'b list

types

types name = 71

Introduces an abbreviation name for type

Examples:

types
name = string

('a,’b)foo =’a list x 'b list

Type abbreviations are expanded immediately after parsing
Not present in internal representation and Isabelle output

datatype

The example

datatype 'a list = Nil | Cons ’a (’a list)

Properties:

Types: NIl . alist
Cons :: ’'a='alist = 'alist

Distinctness: Nil # Cons X Xs
Injectivity: (Cons xXxs=Consyys) =(X=Yy A XS =YS)

11

The general case

datatype (a1,...,ap)7 = CiTi1...Tim,

‘ Ck Tk,l---Tk,nk

Types: C Til = " = Tin, = (041, . ,Oén)T
Distinctness: C; ... #C; ... fi#

Injectivity:

(Oz T1...Tp, = zylym) — (1131 = Y1 N\ ...\ Tp, :yni)

12

The general case

datatype (ai1,...,an)7 = C1T11...Tin,
|
|

Ck Tk,l---Tk,nk

Types: i Til = " = Tin, = (041, e ,Oén)T
Distinctness: C; ... #C; ... fi#
Injectivity:

(07;331...:137%: iyl...ym):(ajlzyl/\.../\ajni:yni)

Distinctness and Injectivity are applied automatically
Induction must be applied explicitly

12

Function definition in Isabelle/HOL

Why nontermination can be harmful

How aboutfx=fx+17?

Why nontermination can be harmful

How aboutfx=fx+17?

Subtract f x on both sides.
—0=1

Why nontermination can be harmful

How aboutfx=fx+17?

Subtract f x on both sides.
—0=1

! All functions in HOL must be total '

14

Function definition schemas in Isabelle/HOL

Non-recursive with definition
No problem

15

Function definition schemas in Isabelle/HOL

Non-recursive with definition
No problem

Primitive-recursive with primrec
Terminating by construction

15

Function definition schemas in Isabelle/HOL

Non-recursive with definition
No problem

Primitive-recursive with primrec
Terminating by construction

Well-founded recursion with fun
Automatic termination proof

15

Function definition schemas in Isabelle/HOL

Non-recursive with definition
No problem

Primitive-recursive with primrec
Terminating by construction

Well-founded recursion with fun
Automatic termination proof

Well-founded recursion with function
User-supplied termination proof

15

definition

Definition (non-recursive) by example

definition sq :: nat = nat where sQNn=n*n

17

Definitions: pitfalls

definition prime :: nat = bool where
primep=(_1L<pA(Mdvdp —m=1vm=p))

Definitions: pitfalls

definition prime :: nat = bool where
primep=(_1L<pA(Mdvdp —m=1vm=p))

Not a definition: free m not on left-hand side

Definitions: pitfalls

definition prime :: nat = bool where
primep=(_1L<pA(Mdvdp —m=1vm=p))

Not a definition: free m not on left-hand side

! Every free variable on the rhs must occur on the |Ihs

18

Definitions: pitfalls

definition prime :: nat = bool where
primep=(_1L<pA(Mdvdp —m=1vm=p))

Not a definition: free m not on left-hand side

! Every free variable on the rhs must occur on the |Ihs '

primep=(_1L<pA(VmM. mdvdp—m=1vm=p))

Using definitions

Definitions are not used automatically

19

Using definitions

Definitions are not used automatically

Unfolding the definition of sq:
apply (unfold sq_def)

primrec

20

The example

primrec app :: ’alist = 'a list = ’a list where

app Nil YyS=YyS |
app (Cons x xs) ys = Cons X (app XS ys)

The general case

If 7 IS a datatype (with constructors (1, ..., C;) then
f:---=7=-..-= 7 can be defined by primitive recursion:

fiEl...(Cl y1,1...y1,n1)...a;p E— 7“1‘

f$1(0k yk,l...yk,nk)...xp —= Tr

22

The general case

If 7 IS a datatype (with constructors (1, ..., C;) then
f:---=7=-..-= 7 can be defined by primitive recursion:

f:El...(Cl y1,1...y1,n1)...a:p E— 7“1‘

f$1(0k yk,l...ykjnk)...xp —= Tr

The recursive calls in r; must be structurally smaller,
l.e. of the form fai...yi;...qp

22

nat Is a datatype

datatype nat = 0 | Suc nat

23

nat Is a datatype

datatype nat = 0 | Suc nat

Functions on nat definable by primrec!

primrec f:: nat = ...
fO=..
f(Sucn)=..fn..

More predefined types and functions

Type option

datatype 'a option = None | Some 'a

25

Type option

datatype 'a option = None | Some ’'a

Important application:

. = 'aoption = partial function:
None =~ no result
Somea ~ resulta

25

Type option

datatype 'a option = None | Some ’'a

Important application:

. = 'aoption = partial function:
None =~ no result
Somea ~ resulta

Example:
primrec lookup :: '’k = ('k x 'v) list = 'v option where

25

Type option

datatype 'a option = None | Some ’'a

Important application:

. = 'aoption = partial function:
None =~ no result
Somea ~ resulta

Example:
primrec lookup :: '’k = ('k x 'v) list = 'v option where
lookup k [] = None

25

Type option

datatype 'a option = None | Some ’'a

Important application:

. = 'aoption = partial function:
None =~ no result
Somea =~ resulta
Example:
primrec lookup :: '’k = ('k x 'v) list = 'v option where
lookup k [] = None |
lookup Kk (X#xS) =

(if fst x = k then Some(snd x) else lookup k xs)

25

case

Datatype values can be taken apart with case expressions:

(case xsof[] = ... |y#YyS = ...y ... yS ...)

26

case

Datatype values can be taken apart with case expressions:

(case xsof[] = ... |y#YyS = ...y ... yS ...)

Wildcards:
(case xsof [=[] | Y#_ = [V])

case

Datatype values can be taken apart with case expressions:

(case xsof[] = ... |y#YyS = ...y ... yS ...)

Wildcards:
(case xsof [=[] | Y#_ = [V])

Nested patterns:
(case xsof [0] =0 |[Sucn] =n|_ = 2)

case

Datatype values can be taken apart with case expressions:

(case xsof[] = ... |y#YS = ...y ... yS ...)

Wildcards:
(case xsof [| =[] |y#_=[y])

Nested patterns:
(case xsof [0] =0 |[Sucn] =n|_ = 2)

Complicated patterns mean complicated proofs!

case

Datatype values can be taken apart with case expressions:

(case xsof[] = ... |y#YS = ...y ... yS ...)

Wildcards:
(case xsof [| =[] |y#_=[y])

Nested patterns:
(case xsof [0] =0 |[Sucn] =n|_ = 2)

Complicated patterns mean complicated proofs!

Needs () in context

Proof by case distinction

If ¢ .. 7 and 7 Is a datatype
apply (case_tac t)

Proof by case distinction

If ¢ .. 7 and 7 Is a datatype
apply (case_tac t)
creates k subgoals

t:Ciwl...:Cp:...

one for each constructor C; of type .

27

Demo: trees

28

fun

From primitive recursion
to arbitrary pattern matching

Example: Fibonacchi

fun fib :; nat = nat where

fio0O=0 |
fibo (Suc0) =1 |
fib (Suc(Suc n)) =fib (n+1) + fib n

Example: Separation

fun sep ::’a = "alist = ’a list where

sepal]=1] |
sep a[x] =[X] |
sep a (x#y#zs) = X # a # sep a (y#zs)

Example: Ackermann

fun ack :: nat = nat = nat where

ack O n =3ucn |
ack (Sucm) 0 =ack m (Suc 0) |
ack (Suc m) (Suc n) = ack m (ack (Suc m) n)

Key features of fun

Arbitrary pattern matching

33

Key features of fun

Arbitrary pattern matching
Order of equations matters

33

Key features of fun

 Arbitrary pattern matching
* Order of equations matters

e Termination must be provable
by lexicographic combination of size measures

33

size(n::nat) = n

Size

34

size(n::nat) = n
size(xs) = length xs

Size

34

Size

size(n::nat) = n
size(xs) = length xs
size counts number of (non-nullary) constructors

34

Lexicographic ordering

Either the first component decreases, or it stays unchanged
and the second component decreases:

35

Lexicographic ordering

Either the first component decreases, or it stays unchanged
and the second component decreases:

(5,3) > (4,7) > (4,6) > (4,0) > (3,42) > - -

35

Lexicographic ordering

Either the first component decreases, or it stays unchanged
and the second component decreases:

(5,3) > (4,7) > (4,6) > (4,0) > (3,42) > - --
Similar for tuples:

(5,6,3) > (4,12,5) > (4,11,9) > (4,11,8) > - --

35

Lexicographic ordering

Either the first component decreases, or it stays unchanged
and the second component decreases:

(5,3) > (4,7) > (4,6) > (4,0) > (3,42) > - --
Similar for tuples:
(5,6,3) > (4,12,5) > (4,11,9) > (4,11,8) > ---

Theorem If each component ordering terminates, then
their lexicographic product terminates, too.

35

Ackermann terminates

ack O n=Sucn

ack (Suc m) O = ack m (Suc 0)

ack (Suc m) (Suc n) = ack m (ack (Suc m) n)

Ackermann terminates

ack O n=Sucn

ack (Suc m) O = ack m (Suc 0)

ack (Suc m) (Suc n) = ack m (ack (Suc m) n)

because the arguments of each recursive call are
lexicographically smaller than the arguments on the Ihs.

36

Ackermann terminates

ack O n=Sucn

ack (Suc m) O = ack m (Suc 0)

ack (Suc m) (Suc n) = ack m (ack (Suc m) n)

because the arguments of each recursive call are
lexicographically smaller than the arguments on the Ihs.

Note: order of arguments not important for Isabelle!

36

Computation Induction

If /:: 7= 7"1s defined by fun, a special induction schema is
provided to prove P(z) for all = :: 7:

Computation Induction

If /:: 7= 7"1s defined by fun, a special induction schema is
provided to prove P(z) for all = :: 7:

for each equation f(e) =t,
prove P(e) assuming P(r) for all recursive calls f(r) In t.

Computation Induction

If /:: 7= 7"1s defined by fun, a special induction schema is
provided to prove P(z) for all = :: 7:

for each equation f(e) =t,
prove P(e) assuming P(r) for all recursive calls f(r) In t.

Induction follows course of (terminating!) computation

Computation Induction: Example

fun div2 :: nat = nat where
div20=0 |

div2 (Suc 0) =0 |
div2(Suc(Suc n)) = Suc(div2 n)

38

Computation Induction: Example

fun div2 :: nat = nat where
div20=0 |

div2 (Suc 0) =0 |
div2(Suc(Suc n)) = Suc(div2 n)

~» Induction rule di v2. 1 nduct:

P(0) P(Suc0) P(n)= P(Suc(Sucn))
P(m)

Demo: fun

39

		extcolor {darkblue}{Basic constructs}
		extcolor {darkblue}{Notation}
		extcolor {darkblue}{The proof state}
		extcolor {darkblue}{Introducing new types}
		extcolor {darkblue}{typedecl}
		extcolor {darkblue}{types}
		extcolor {darkblue}{The example}
		extcolor {darkblue}{The general case}
		extcolor {darkblue}{Why nontermination can be harmful}
		extcolor {darkblue}{Function definition schemas in Isabelle/HOL}
		extcolor {darkblue}{Definition (non-recursive) by example}
		extcolor {darkblue}{Definitions: pitfalls}
		extcolor {darkblue}{Using definitions}
		extcolor {darkblue}{The example}
		extcolor {darkblue}{The general case}
		extcolor {darkblue}{nat is a datatype}
		extcolor {darkblue}{Type option}
		extcolor {darkblue}{case}
		extcolor {darkblue}{Proof by case distinction}
		extcolor {darkblue}{Example: Fibonacchi}
		extcolor {darkblue}{Example: Separation}
		extcolor {darkblue}{Example: Ackermann}
		extcolor {darkblue}{Key features of fun}
		extcolor {darkblue}{Size}
		extcolor {darkblue}{Lexicographic ordering}
		extcolor {darkblue}{Ackermann terminates}
		extcolor {darkblue}{Computation Induction}
		extcolor {darkblue}{Computation Induction: Example}

