HOL: Propositional Logic

Overview

Natural deduction
Rule application in Isabelle/HOL

Rule notation

Instead of

(A ..

Ap] = A

Natural Deduction

Natural deduction

Two kinds of rules for each logical operator &:

Natural deduction

Two kinds of rules for each logical operator &:
Introduction: how can | prove A ¢ B?

Natural deduction

Two kinds of rules for each logical operator &:
Introduction: how can | prove A ¢ B?
Elimination: what can | prove from A ¢ B?

Natural deduction for propositional logic

A B conj | conj E
disjl1/2 disj E

| npll | "pE
| £l | ff D1 | ff D2

not | not

Natural deduction for propositional logic

A B

A B conj | conj E
disjl1/2 disj E

| npll | "pE
| £l | ff D1 | ff D2

not | not

Natural deduction for propositional logic

A B : .
A/\BCOnjl conj E

AvBAdeISjll/Z disj E
| npll | "pE

| £l | ff D1 | ff D2

not | not

Natural deduction for propositional logic

A B : :
A/\BCOnjl conj E
A B
AvBAdeISjll/Z disj E
| npll | "pE
| £l | ff D1 | ff D2

not | not

Natural deduction for propositional logic

A B : :
AABConjl conj E

A B . .
AvBAdeISjll/Z disj E
AHB|n'pl | MPE

| ffl | ff D1 | ff D2

not | not

Natural deduction for propositional logic

A B : :
AABConjl conj E

A B . .
AvBAdeISjll/Z disj E
A=—DB. -
AHB|n'pl | MPE

| ffl | ff D1 | ff D2

not | not

Natural deduction for propositional logic

QAE conj | conj E
os aogdisill2 di sj E
A=2im e

i w 1 i f DL | f D2

not | not

Natural deduction for propositional logic

A B : :
A/\BCOnjl conj E

A B . .
AvBAdeISjll/Z disj E
A=—DB. -
AHB|n'pl | MPE

A—B B=—=—A. . _
A=R | f 11 | ff D1 | ff D2

not | not

Natural deduction for propositional logic

QAE conj | conj E

AC‘BAEBdisjlllz di sj E

ﬁjgirrm | MPE

A=3 B="Rjffl £ 1 D1 i f 1 D2
not | not E

- A

Natural deduction for propositional logic

A B
ANB

conj | conj E

A B . .
AvBAdeISjll/Z disj E

A=—DB. -
AHB|n'pl | MPE

A—B B=—=—A. . _
A=R | f 11 | ff D1 | ff D2

A — False
- A

not | not

Natural deduction for propositional logic

A B . ANB
AABConjl

conj E

A B . .
AvBAdeISjll/Z disj E

A=—DB. -
AHB|n'pl | MPE

A—B B=—=—A. . _
A=R | f 11 | ff D1 | ff D2

A — False
- A

not | not

Natural deduction for propositional logic

A B
ANB

A B

conj |

AvB AvB

A—B.
A_p'"P

A—B B=—A.

A=B

A — False
- A

not |

disjll/2

ffl

AAnB [AB]=C conj E
C
disj E
| "pE
| ff D1 | ff D2
not E

Natural deduction for propositional logic

QAE conj | ANB [['é;B]]:C conj E
AC‘BAEBdisjlllz AvB = di sj E
ﬁigin'pl | MPE
A=3 B="Rjffl £ 1 D1 i f 1 D2
A = False | not E

- A

Natural deduction for propositional logic

A B . AANB [AB]=C
AABConjl c

conj E

AvB AvB C

A=—DB: -

AHB|n'pl | MPE

A=B B=A ;) £ DL £ D2
A=B

A = False | not E

- A

Natural deduction for propositional logic

A B
ANB

A B

conj |

AvB AvB

A—B.
A_p'"P

A—B B=—=A.

A=B

A — False
- A

not |

disjll/2

ffl

AAB [AB]= C

c conj E
C
A— B :
c | MPE
| ff D1 | ff D2
not E

Natural deduction for propositional logic

A B
ANB

A B

conj |

AvB AvB

A—B.
A_p'"P

A—B B=—=A.

A=B

A — False
- A

not |

disjll/2

ffl

AAB [AB]= C

c conj E
AvB A=—C Bz:ﬁ(:disjE
C
A—B A IB::>C3ian
C
| ff D1 | ff D2
not E

Natural deduction for propositional logic

A B
ANB

A B

conj |

AvB AvB

A—B.
A_p'"P

A—B B=—=A.

A=B

A — False
- A

not |

disjll/2

ffl

AAB [AB]= C

c conj E
AVB A—C B—C g
C
A—B A B=Cj ¢
C
A=B iitp1 2B it
not &

Natural deduction for propositional logic

A B
ANB

A B

conj |

AvB AvB

A—B.
A_p'"P

A—B B=—=A.

A=B

A — False
- A

not |

disjll/2

ffl

AAB [AB]= C

c conj E
AvB A=—C B:CdisjE
C
A—B A B:Cin‘pE
C
A=B . A=B .
A:B'ffm B:A'fsz
not E

Natural deduction for propositional logic

A B
ANB

conj |

A B ..
AvBAdeIS]ll/Z

A—B.
A_p P

A—B B:Aiffl
A=B

A — False

A not |

AAB [AB]= C

c conj E
C
A—B A B:Cin‘pE
C
A=B . A=B .
A:B'ffm B:A'fsz
- A not E

C

Natural deduction for propositional logic

A B
ANB

conj |

A B ..
AvBAdeIS]ll/Z

A—B.
A_p P

A—B B:Aiffl
A=B

A — False

A not |

AAB [AB]= C

c conj E
C
A—B A B:Cin‘pE
C
A=B . A=B .
A:B'ffm B:A'fsz
- A AnotE

C

Operational reading

Ar.. A,
A

Operational reading

Ar.. A,
A

Introduction rule:
To prove A it suffices to prove A, ... A,.

Operational reading

Ar.. A,
A

Introduction rule:
To prove A it suffices to prove A, ... A,.

Elimination rule
If | know A; and want to prove A
It suffices to prove A,... A,.

Equality

Equality

S:tsym r=s s=t
t=s =t
s=t A(s

()subst

Equality

s=t r=s s=t
sym
=g refl f=s Y —¢ Lrans
s=t A(S)
A Subst

Rarely needed explicitly — used implicitly by simp

More rules

A—B A

More rules

A—B A

np

- A — False ccont r -A=—A

cl assi cal
A A

More rules

A—B A

B nm
ﬂA:;\ False ..ont ﬁAA:> A ¢| assi cal

Remark:

ccontr and cl assi cal are not derivable from the
ND-rules.

More rules

A—B A

B nm
ﬂA:;\ False ..ont ﬁAA:> A ¢| assi cal

Remark:

ccontr and cl assi cal are not derivable from the
ND-rules.
They make the logic “classical”, i.e. “non-constructive”.

Al

Proof by assumption

A, |
assunpti on

A;

10

Rule application: the rough idea

Applying rule [A;; ... ; A, | = Ato subgoal C:

Rule application: the rough idea

Applying rule [A;; ... ; A, | = Ato subgoal C:
Unify A and C

Rule application: the rough idea

Applying rule [A;; ... ; A, | = Ato subgoal C:
Unify A and C
Replace C with n new subgoals A; ... A,

Rule application: the rough idea

Applying rule [A;; ... ; A, | = Ato subgoal C:
Unify A and C
Replace C with n new subgoals A; ... A,
Working backwards, like in Prolog!

Rule application: the rough idea

Applying rule [A;; ... ; A, | = Ato subgoal C:
Unify A and C
Replace C with n new subgoals A; ... A,
Working backwards, like in Prolog!

Example: rule: [?P; ?Q] = ?P A ?Q
subgoal: 1. AAB

Rule application: the rough idea

Applying rule [A;; ... ; A, | = Ato subgoal C:
Unify A and C
Replace C with n new subgoals A; ... A,
Working backwards, like in Prolog!

Example: rule: [?P; ?Q] = ?P A ?Q
subgoal: 1. AAB
Result: 1. A
2.B

Rule application: the detalls

A

Rule: [[Al, .o ,An]]
B C

. —
Subgoal: 1.[By;... ;B] =

Rule application: the details

Rule: [A;; ... ;AL] = A
Subgoal: 1.[By; ... ;B]=C
Substitution: a(A) = o(C)

Rule application: the details

Rule: [A;; ... ;AL] = A

Subgoal: 1.[By; ... ;Bn]=C

Substitution: a(A) = o(C)
New subgoals: 1.0([Bi;... ;Bn] = Ay)

.n. o([B1;... ;Bn] = A,

Rule application: the details

Rule: [A;; ... ;AL] = A
Subgoal: 1.[By; ... ;Bn]=C
Substitution: a(A) = o(C)
New subgoals: 1.0([Bi;... ;Bn] = Ay)
N.o([B1;... ;B] = Ay)
Command:

apply(rule <rulename>)

Proof by assumption

apply assumption
proves

1.|By;... ;B |=C

by unifying C with one of the B;

Proof by assumption

apply assumption
proves

1.|By;... ;B |=C

by unifying C with one of the B, (backtracking!)

Applying elimination rules

apply(erule <elim-rule>)

Like rule but also
unifies first premise of rule with an assumption
eliminates that assumption

14

Applying elimination rules

apply(erule <elim-rule>)

Like rule but also
unifies first premise of rule with an assumption
eliminates that assumption

Example:
Rule: [?P A ?Q; [?P; ?Q] = ?R] = 7R
Subgoal: 1.[X;AAB)Y]| =<2

14

Applying elimination rules

apply(erule <elim-rule>)

Like rule but also
unifies first premise of rule with an assumption
eliminates that assumption

Example:
Rule: [?P A ?Q; [?P; ?Q] = ?R] = 7R
Subgoal: 1.[X;AAB)Y]| =<2
Unification: ?P A?Q=AABand?R =7

14

Applying elimination rules

apply(erule <elim-rule>)

Like rule but also
unifies first premise of rule with an assumption
eliminates that assumption

Example:

Rule: [?P A ?Q; [?P; ?Q] = ?R] = 7R
Subgoal: 1.[X;AAB)Y]| =<2
Unification: ?P A?Q=AABand?R =7
New subgoal: 1.[X;Y | = [A;B]=Z

14

Applying elimination rules

apply(erule <elim-rule>)

Like rule but also
unifies first premise of rule with an assumption

eliminates that assumption

Example:
Rule: [?P A ?Q; [?P; ?Q] = ?R] = 7R
Subgoal: 1.[X;AAB)Y]| =<2
Unification: ?P A?Q=AABand?R =7
New subgoal: 1.[X;Y | = [A;B]=Z
sameas: L[X;Y;A;B]=Z2

14

How to prove it by natural deduction

Intro rules decompose formulae to the right of —.
apply(rule <intro-rule>)

15

How to prove it by natural deduction

Intro rules decompose formulae to the right of —.

apply(rule <intro-rule>)
Elim rules decompose formulae on the left of —-.
apply(erule <elim-rule>)

15

Demo: propositional proofs

—> VS —

To facilitate application of theorems:

write them like this [Aq; ...; A = A
not like this A, A ... NA, — A

17

HOL: Predicate Logic

Parameters

Subgoal:
1. AX1 ... X,. FOormula

The x; are called parameters of the subgoal.
Intuition: local constants, i.e. arbitrary but fixed values.

19

Parameters

Subgoal:

1. AX1 ... X,. FOormula

The x; are called parameters of the subgoal.
Intuition: local constants, i.e. arbitrary but fixed values.

Rules are automatically lifted over Ax; ... x,, and applied
directly to Formula.

19

Scope

Scope of parameters: whole subgoal
Scope of Vv, 3, ...: ends with ; or —

Scope

Scope of parameters: whole subgoal
Scope of Vv, 3, ...: ends with ; or —

AXY. [VY.PYy —Qzy, QXxy]= 3IX. QXY
means

AXY. [(VY1.PyT — Qzyq); OXy]= 3IX1.QX 1Yy

a-Conversion

Bound variables are renamed automatically to avoid name
clashes with other variables.

21

Natural deduction for quantifiers

VX, P(X) al |1 al | E

exl exk

Natural deduction for quantifiers

AX. P(X)

VX, P(X) al |1 al | E

exl exk

Natural deduction for quantifiers

AX. P(X)

VX, P(X) al |1 al | E

I exkE

IX. P(X) X

Natural deduction for quantifiers

AX. P(X)
vV X. P(X)

P(?X)
IX. P(X) ©

al |1 al | E

pd exk

Natural deduction for quantifiers

Q\;(_' Egg alrp PR . al | E
P(?x) X exkE

IX. P(X) ©

Natural deduction for quantifiers

é\))((Egg Al vV X. P(X) ;(?x) — R Al E
() X exE

IX. P(X) ©

Natural deduction for quantifiers

é\))((Egg Al vV X. P(X) ;(?x) — R Al E
P(?X) | IX. P(X) ex E

IX. P(X) © R

Natural deduction for quantifiers

AX. P(X) Al VX. P(X) P(?X) = R
vV X. P(X) R

P(?X) x| Ix. P(x) AX.P(X) = R
IX. P(X) R

al | E

exkE

Natural deduction for quantifiers

AX. P(X) vVX. P(X) P(?X) = R

7. P(X) al | | R al | E
P(?X) Ix. P(x) AX.P(X) = R

IX. P(X) ex] R exE

al I I and exE introduce new parameters (/AX).

Natural deduction for quantifiers

AX. P(X) vVX. P(X) P(?X) = R

7. P(X) al | | R al | E
P(?X) Ix. P(x) AX.P(X) = R

IX. P(X) ex] R exE

al I I and exE introduce new parameters (/AX).
al | E and exl introduce new unknowns (?x).

Instantiating rules

apply(rule_tac x = term In rule)

Like rule, but ?x In rule IS instantiated by term before
application.

23

Instantiating rules

apply(rule_tac x = term In rule)

Like rule, but ?x In rule IS instantiated by term before
application.

Similar: erule tac

23

Instantiating rules

apply(rule_tac x = term In rule)

Like rule, but ?x In rule IS instantiated by term before
application.

Similar: erule tac

! X 1S In rule, not in the goal '

23

A quantifier proof

1.va.db.a=0Db

A quantifier proof

l.va.db.a=Db
apply(rule alll)

A quantifier proof

l.va.db.a=Db
apply(rule alll)
1. Aa. db.a=Db

A quantifier proof

1.va.db.a=0Db

apply(rule alll)
1. Aa. db.a=Db
apply(rule_tac x ="a" in exl)

A quantifier proof

1.va.db.a=0Db

apply(rule alll)

1. Aa. db.a=Db
apply(rule_tac x ="a" in exl)
1. N\a.a=a

A quantifier proof

1.va.db.a=Db

apply(rule alll)

1. Aa. db.a=Db
apply(rule_tac x ="a" in exl)
1. N\a.a=a

apply(rule refl)

Demo: quantifier proofs

More proof methods

Forward proofs: frule and drule

“Forward” rule: A; — A
Subgoal: 1.[By; ... ;B] =C

Forward proofs: frule and drule

“Forward” rule: A; — A
Subgoal: 1.[By; ... ;B] =C
Substitution: a(B;) = o(Ay)

Forward proofs: frule and drule

“Forward” rule: A; — A

Subgoal: 1.[By; ... ;B] =C
Substitution: a(B;) = o(Ay)

New subgoal: 1.0([By;... ;B A] = C)

Forward proofs: frule and drule

“Forward” rule: A; — A

Subgoal: 1.[By;... ;B] =C

Substitution: a(B;) = o(Ay)

New subgoal: 1.0([By;... ;B A] = C)
Command:

apply(frule rulename)

Forward proofs: frule and drule

“Forward” rule: A; — A

Subgoal: 1.[By;... ;B] =C

Substitution: a(B;) = o(Ay)

New subgoal: 1.0([By;... ;B A] = C)
Command:

apply(frule rulename)

Like frule but also deletes B;:
apply(drule rulename)

27

frule and drule: the general case

Rule: TA,; ... ;AL] = A
Creates additional subgoals:

.m-l. o([B1;... B,] = An)
m.o([By;... ;B A] = C)

Forward proofs: OF

OFrq, ... 1,]

Prove assumption 1 of theorem r with theorem ry,
and assumption 2 with theorem r,, and ...

29

Forward proofs: OF

OFrq, ... 1,]

Prove assumption 1 of theorem r with theorem ry,
and assumption 2 with theorem r,, and ...

Ruler [A; ... AL] = A
Rule rq [Bi;... ;B,] =B
Substitution ¢(B) = o(Aq)

[OF r4]

29

Forward proofs: OF

OFrq, ... 1,]

Prove assumption 1 of theorem r with theorem ry,
and assumption 2 with theorem r,, and ...

Ruler [A; ... AL] = A
Rule rq [Bi;... ;B,] =B
Substitution ¢(B) = o(Aq)

[OF r4] o([B1;...;BnjAg; ... A] = A)

Clarifying the goal

Clarifying the goal

apply(clarify)
Repeated application of safe rules

without splitting the goal

Clarifying the goal

apply(clarify)
Repeated application of safe rules

without splitting the goal

apply(clarsimp simp add: ...)
Combination of clarify and simp.

Demo: proof methods

		extcolor {darkblue}{Overview}
		extcolor {darkblue}{Rule notation}
		extcolor {darkblue}{Natural deduction}
		extcolor {darkblue}{Natural deduction for propositional logic}
		extcolor {darkblue}{Operational reading}
		extcolor {darkblue}{Equality}
		extcolor {darkblue}{More rules}
		extcolor {darkblue}{Proof by assumption}
		extcolor {darkblue}{Rule application: the rough idea}
		extcolor {darkblue}{Rule application: the details}
		extcolor {darkblue}{Proof by assumption}
		extcolor {darkblue}{Applying elimination rules}
		extcolor {darkblue}{How to prove it by natural deduction}
		extcolor {darkblue}{isa {{isasymLongrightarrow }} vs isa {{isasymlongrightarrow }}}
		extcolor {darkblue}{Parameters}
		extcolor {darkblue}{Scope}
		extcolor {darkblue}{$alpha $-Conversion}
		extcolor {darkblue}{Natural deduction for quantifiers}
		extcolor {darkblue}{Instantiating rules}
		extcolor {darkblue}{A quantifier proof}
		extcolor {darkblue}{Forward proofs: frule and drule}
		extcolor {darkblue}{frule and drule: the general case}
		extcolor {darkblue}{Forward proofs: OF}
		extcolor {darkblue}{Clarifying the goal}

