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Overview

• Natural deduction
• Rule application in Isabelle/HOL
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Rule notation

A1 . . . An

A instead of [[A1 . . . An]] =⇒ A
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Natural Deduction
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Natural deduction

Two kinds of rules for each logical operator ⊕:
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Two kinds of rules for each logical operator ⊕:

Introduction: how can I prove A ⊕ B?
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Natural deduction

Two kinds of rules for each logical operator ⊕:

Introduction: how can I prove A ⊕ B?

Elimination: what can I prove from A ⊕ B?
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Natural deduction for propositional logic

A ∧ B
conjI conjE

disjI1/2 disjE

impI impE

iffI iffD1 iffD2

notI notE

6



Natural deduction for propositional logic

A B
A ∧ B

conjI conjE

disjI1/2 disjE

impI impE

iffI iffD1 iffD2

notI notE

6



Natural deduction for propositional logic

A B
A ∧ B

conjI conjE

A ∨ B A ∨ B
disjI1/2 disjE

impI impE

iffI iffD1 iffD2

notI notE

6



Natural deduction for propositional logic

A B
A ∧ B

conjI conjE

A
A ∨ B

B
A ∨ B

disjI1/2 disjE

impI impE

iffI iffD1 iffD2

notI notE

6



Natural deduction for propositional logic

A B
A ∧ B

conjI conjE

A
A ∨ B

B
A ∨ B

disjI1/2 disjE

A −→ B
impI impE

iffI iffD1 iffD2

notI notE

6



Natural deduction for propositional logic

A B
A ∧ B

conjI conjE

A
A ∨ B

B
A ∨ B

disjI1/2 disjE

A =⇒ B
A −→ B

impI impE

iffI iffD1 iffD2

notI notE

6



Natural deduction for propositional logic

A B
A ∧ B

conjI conjE

A
A ∨ B

B
A ∨ B

disjI1/2 disjE

A =⇒ B
A −→ B

impI impE

A = B iffI iffD1 iffD2

notI notE

6



Natural deduction for propositional logic

A B
A ∧ B

conjI conjE

A
A ∨ B

B
A ∨ B

disjI1/2 disjE

A =⇒ B
A −→ B

impI impE

A =⇒ B B =⇒ A
A = B iffI iffD1 iffD2

notI notE

6



Natural deduction for propositional logic

A B
A ∧ B

conjI conjE

A
A ∨ B

B
A ∨ B

disjI1/2 disjE

A =⇒ B
A −→ B

impI impE

A =⇒ B B =⇒ A
A = B iffI iffD1 iffD2

¬ A
notI notE

6



Natural deduction for propositional logic

A B
A ∧ B

conjI conjE

A
A ∨ B

B
A ∨ B

disjI1/2 disjE

A =⇒ B
A −→ B

impI impE

A =⇒ B B =⇒ A
A = B iffI iffD1 iffD2

A =⇒ False
¬ A

notI notE

6



Natural deduction for propositional logic

A B
A ∧ B

conjI
A ∧ B

C
conjE

A
A ∨ B

B
A ∨ B

disjI1/2 disjE

A =⇒ B
A −→ B

impI impE

A =⇒ B B =⇒ A
A = B iffI iffD1 iffD2

A =⇒ False
¬ A

notI notE

6



Natural deduction for propositional logic

A B
A ∧ B

conjI
A ∧ B [[A;B]] =⇒ C

C
conjE

A
A ∨ B

B
A ∨ B

disjI1/2 disjE

A =⇒ B
A −→ B

impI impE

A =⇒ B B =⇒ A
A = B iffI iffD1 iffD2

A =⇒ False
¬ A

notI notE

6



Natural deduction for propositional logic

A B
A ∧ B

conjI
A ∧ B [[A;B]] =⇒ C

C
conjE

A
A ∨ B

B
A ∨ B

disjI1/2 A ∨ B
C

disjE

A =⇒ B
A −→ B

impI impE

A =⇒ B B =⇒ A
A = B iffI iffD1 iffD2

A =⇒ False
¬ A

notI notE

6



Natural deduction for propositional logic

A B
A ∧ B

conjI
A ∧ B [[A;B]] =⇒ C

C
conjE

A
A ∨ B

B
A ∨ B

disjI1/2 A ∨ B A =⇒ C B =⇒ C
C

disjE

A =⇒ B
A −→ B

impI impE

A =⇒ B B =⇒ A
A = B iffI iffD1 iffD2

A =⇒ False
¬ A

notI notE

6



Natural deduction for propositional logic

A B
A ∧ B

conjI
A ∧ B [[A;B]] =⇒ C

C
conjE

A
A ∨ B

B
A ∨ B

disjI1/2 A ∨ B A =⇒ C B =⇒ C
C

disjE

A =⇒ B
A −→ B

impI A −→ B
C

impE

A =⇒ B B =⇒ A
A = B iffI iffD1 iffD2

A =⇒ False
¬ A

notI notE

6



Natural deduction for propositional logic

A B
A ∧ B

conjI
A ∧ B [[A;B]] =⇒ C

C
conjE

A
A ∨ B

B
A ∨ B

disjI1/2 A ∨ B A =⇒ C B =⇒ C
C

disjE

A =⇒ B
A −→ B

impI A −→ B A B =⇒ C
C

impE

A =⇒ B B =⇒ A
A = B iffI iffD1 iffD2

A =⇒ False
¬ A

notI notE

6



Natural deduction for propositional logic

A B
A ∧ B

conjI
A ∧ B [[A;B]] =⇒ C

C
conjE

A
A ∨ B

B
A ∨ B

disjI1/2 A ∨ B A =⇒ C B =⇒ C
C

disjE

A =⇒ B
A −→ B

impI A −→ B A B =⇒ C
C

impE

A =⇒ B B =⇒ A
A = B iffI A=B iffD1 A=B iffD2

A =⇒ False
¬ A

notI notE

6



Natural deduction for propositional logic

A B
A ∧ B

conjI
A ∧ B [[A;B]] =⇒ C

C
conjE

A
A ∨ B

B
A ∨ B

disjI1/2 A ∨ B A =⇒ C B =⇒ C
C

disjE

A =⇒ B
A −→ B

impI A −→ B A B =⇒ C
C

impE

A =⇒ B B =⇒ A
A = B iffI A=B

A =⇒ B iffD1 A=B
B =⇒ A iffD2

A =⇒ False
¬ A

notI notE

6



Natural deduction for propositional logic

A B
A ∧ B

conjI
A ∧ B [[A;B]] =⇒ C

C
conjE

A
A ∨ B

B
A ∨ B

disjI1/2 A ∨ B A =⇒ C B =⇒ C
C

disjE

A =⇒ B
A −→ B

impI A −→ B A B =⇒ C
C

impE

A =⇒ B B =⇒ A
A = B iffI A=B

A =⇒ B iffD1 A=B
B =⇒ A iffD2

A =⇒ False
¬ A

notI ¬ A
C

notE

6



Natural deduction for propositional logic
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Operational reading

A1 . . . An

A
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Operational reading

A1 . . . An

A

Introduction rule:
To prove A it suffices to prove A1 . . . An.
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Operational reading

A1 . . . An

A

Introduction rule:
To prove A it suffices to prove A1 . . . An.

Elimination rule
If I know A1 and want to prove A

it suffices to prove A2 . . . An.
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Equality

t = t refl
s = t
t = s

sym r = s s = t
r = t trans
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Equality

t = t refl
s = t
t = s

sym r = s s = t
r = t trans

s = t A(s)
A(t)

subst
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Equality

t = t refl
s = t
t = s

sym r = s s = t
r = t trans

s = t A(s)
A(t)

subst

Rarely needed explicitly — used implicitly by simp
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More rules

A −→ B A
B

mp
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More rules

A −→ B A
B

mp

¬ A =⇒ False
A

ccontr ¬ A =⇒ A
A classical
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Remark:

ccontr and classical are not derivable from the
ND-rules.
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More rules

A −→ B A
B

mp

¬ A =⇒ False
A

ccontr ¬ A =⇒ A
A classical

Remark:

ccontr and classical are not derivable from the
ND-rules.
They make the logic “classical”, i.e. “non-constructive”.
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Proof by assumption

A1 . . . An

Ai

assumption
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Rule application: the rough idea

Applying rule [[ A1; . . . ; An ]] =⇒ A to subgoal C:
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Rule application: the rough idea

Applying rule [[ A1; . . . ; An ]] =⇒ A to subgoal C:
• Unify A and C
• Replace C with n new subgoals A1 . . . An

Working backwards, like in Prolog!

Example: rule: [[?P; ?Q]] =⇒ ?P ∧ ?Q
subgoal: 1. A ∧ B

Result: 1. A
2. B
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Rule application: the details

Rule: [[ A1; . . . ; An ]] =⇒ A
Subgoal: 1. [[ B1; . . . ; Bm ]] =⇒ C

12



Rule application: the details

Rule: [[ A1; . . . ; An ]] =⇒ A
Subgoal: 1. [[ B1; . . . ; Bm ]] =⇒ C

Substitution: σ(A) ≡ σ(C)
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Rule application: the details

Rule: [[ A1; . . . ; An ]] =⇒ A
Subgoal: 1. [[ B1; . . . ; Bm ]] =⇒ C

Substitution: σ(A) ≡ σ(C)
New subgoals: 1. σ( [[ B1; . . . ; Bm ]] =⇒ A1)

...
n. σ( [[ B1; . . . ; Bm ]] =⇒ An)
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Rule application: the details

Rule: [[ A1; . . . ; An ]] =⇒ A
Subgoal: 1. [[ B1; . . . ; Bm ]] =⇒ C

Substitution: σ(A) ≡ σ(C)
New subgoals: 1. σ( [[ B1; . . . ; Bm ]] =⇒ A1)

...
n. σ( [[ B1; . . . ; Bm ]] =⇒ An)

Command:

apply(rule <rulename>)
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Proof by assumption

apply assumption
proves

1. [[ B1; . . . ; Bm ]] =⇒ C

by unifying C with one of the Bi
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Proof by assumption

apply assumption
proves

1. [[ B1; . . . ; Bm ]] =⇒ C

by unifying C with one of the Bi (backtracking!)
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Applying elimination rules

apply(erule <elim-rule>)

Like rule but also
• unifies first premise of rule with an assumption
• eliminates that assumption
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Applying elimination rules

apply(erule <elim-rule>)

Like rule but also
• unifies first premise of rule with an assumption
• eliminates that assumption

Example:
Rule: [[?P ∧ ?Q; [[?P; ?Q]] =⇒ ?R]] =⇒ ?R

Subgoal: 1. [[ X; A ∧ B; Y ]] =⇒ Z
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Applying elimination rules

apply(erule <elim-rule>)

Like rule but also
• unifies first premise of rule with an assumption
• eliminates that assumption

Example:
Rule: [[?P ∧ ?Q; [[?P; ?Q]] =⇒ ?R]] =⇒ ?R

Subgoal: 1. [[ X; A ∧ B; Y ]] =⇒ Z
Unification: ?P ∧ ?Q ≡ A ∧ B and ?R ≡ Z
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Applying elimination rules

apply(erule <elim-rule>)

Like rule but also
• unifies first premise of rule with an assumption
• eliminates that assumption

Example:
Rule: [[?P ∧ ?Q; [[?P; ?Q]] =⇒ ?R]] =⇒ ?R

Subgoal: 1. [[ X; A ∧ B; Y ]] =⇒ Z
Unification: ?P ∧ ?Q ≡ A ∧ B and ?R ≡ Z

New subgoal: 1. [[ X; Y ]] =⇒ [[ A; B ]] =⇒ Z
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Applying elimination rules

apply(erule <elim-rule>)

Like rule but also
• unifies first premise of rule with an assumption
• eliminates that assumption

Example:
Rule: [[?P ∧ ?Q; [[?P; ?Q]] =⇒ ?R]] =⇒ ?R

Subgoal: 1. [[ X; A ∧ B; Y ]] =⇒ Z
Unification: ?P ∧ ?Q ≡ A ∧ B and ?R ≡ Z

New subgoal: 1. [[ X; Y ]] =⇒ [[ A; B ]] =⇒ Z
same as: 1. [[ X; Y; A; B ]] =⇒ Z
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How to prove it by natural deduction

• Intro rules decompose formulae to the right of =⇒.

apply(rule <intro-rule>)
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How to prove it by natural deduction

• Intro rules decompose formulae to the right of =⇒.

apply(rule <intro-rule>)
• Elim rules decompose formulae on the left of =⇒.

apply(erule <elim-rule>)
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Demo: propositional proofs
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=⇒ vs −→

To facilitate application of theorems:

write them like this [[A1; . . . ; An]] =⇒ A
not like this A1 ∧ . . . ∧ An −→ A
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HOL: Predicate Logic
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Parameters

Subgoal:

1.
∧

x1 . . . xn. Formula

The x i are called parameters of the subgoal.
Intuition: local constants, i.e. arbitrary but fixed values.
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Parameters

Subgoal:

1.
∧

x1 . . . xn. Formula

The x i are called parameters of the subgoal.
Intuition: local constants, i.e. arbitrary but fixed values.

Rules are automatically lifted over
∧

x1 . . . xn and applied
directly to Formula.
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Scope

• Scope of parameters: whole subgoal
• Scope of ∀ , ∃ , . . . : ends with ; or =⇒
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Scope

• Scope of parameters: whole subgoal
• Scope of ∀ , ∃ , . . . : ends with ; or =⇒

∧
x y. [[ ∀ y. P y −→ Q z y; Q x y ]] =⇒ ∃ x. Q x y

means
∧

x y. [[ (∀ y1. P y1 −→ Q z y1); Q x y ]] =⇒ ∃ x1. Q x1 y

20



α-Conversion

Bound variables are renamed automatically to avoid name
clashes with other variables.
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Natural deduction for quantifiers

∀ x. P(x)
allI allE

exI exE
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Natural deduction for quantifiers

∧
x. P(x)

∀ x. P(x)
allI

∀ x. P(x) P(?x) =⇒ R
R allE

P(?x)
∃ x. P(x)

exI
∃ x. P(x)

∧
x. P(x) =⇒ R
R

exE

• allI and exE introduce new parameters (
∧

x).
• allE and exI introduce new unknowns (?x).
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Instantiating rules

apply(rule_tac x = term in rule)

Like rule, but ?x in rule is instantiated by term before
application.
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Instantiating rules

apply(rule_tac x = term in rule)

Like rule, but ?x in rule is instantiated by term before
application.

Similar: erule_tac
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Instantiating rules

apply(rule_tac x = term in rule)

Like rule, but ?x in rule is instantiated by term before
application.

Similar: erule_tac

! x is in rule, not in the goal !
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A quantifier proof

1. ∀a. ∃b. a = b
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A quantifier proof

1. ∀a. ∃b. a = b
apply(rule allI)
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A quantifier proof
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A quantifier proof

1. ∀a. ∃b. a = b
apply(rule allI)
1.

∧
a. ∃b. a = b

apply(rule_tac x = "a" in exI)
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A quantifier proof

1. ∀a. ∃b. a = b
apply(rule allI)
1.

∧
a. ∃b. a = b

apply(rule_tac x = "a" in exI)
1.

∧
a. a = a
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A quantifier proof

1. ∀a. ∃b. a = b
apply(rule allI)
1.

∧
a. ∃b. a = b

apply(rule_tac x = "a" in exI)
1.

∧
a. a = a

apply(rule refl)

24



Demo: quantifier proofs
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More proof methods
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Forward proofs: frule and drule

“Forward” rule: A1 =⇒ A
Subgoal: 1. [[ B1; . . . ; Bn ]] =⇒ C
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Forward proofs: frule and drule

“Forward” rule: A1 =⇒ A
Subgoal: 1. [[ B1; . . . ; Bn ]] =⇒ C
Substitution: σ(Bi) ≡ σ(A1)
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Forward proofs: frule and drule

“Forward” rule: A1 =⇒ A
Subgoal: 1. [[ B1; . . . ; Bn ]] =⇒ C
Substitution: σ(Bi) ≡ σ(A1)
New subgoal: 1. σ( [[ B1; . . . ; Bn; A ]] =⇒ C)
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Forward proofs: frule and drule

“Forward” rule: A1 =⇒ A
Subgoal: 1. [[ B1; . . . ; Bn ]] =⇒ C
Substitution: σ(Bi) ≡ σ(A1)
New subgoal: 1. σ( [[ B1; . . . ; Bn; A ]] =⇒ C)

Command:
apply(frule rulename)
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Forward proofs: frule and drule

“Forward” rule: A1 =⇒ A
Subgoal: 1. [[ B1; . . . ; Bn ]] =⇒ C
Substitution: σ(Bi) ≡ σ(A1)
New subgoal: 1. σ( [[ B1; . . . ; Bn; A ]] =⇒ C)

Command:
apply(frule rulename)

Like frule but also deletes Bi:
apply(drule rulename)

27



frule and drule: the general case

Rule: [[ A1; . . . ; Am ]] =⇒ A

Creates additional subgoals:

1. σ( [[ B1; . . . ; Bn ]] =⇒ A2)
...
m-1. σ( [[ B1; . . . ; Bn ]] =⇒ Am)
m. σ( [[ B1; . . . ; Bn; A ]] =⇒ C)
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Forward proofs: OF

r[OF r 1 . . . rn]

Prove assumption 1 of theorem r with theorem r 1,
and assumption 2 with theorem r 2, and . . .
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Forward proofs: OF

r[OF r 1 . . . rn]

Prove assumption 1 of theorem r with theorem r 1,
and assumption 2 with theorem r 2, and . . .

Rule r [[ A1; . . . ; Am ]] =⇒ A
Rule r 1 [[ B1; . . . ; Bn ]] =⇒ B
Substitution σ(B) ≡ σ(A1)
r[OF r 1]
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Forward proofs: OF

r[OF r 1 . . . rn]

Prove assumption 1 of theorem r with theorem r 1,
and assumption 2 with theorem r 2, and . . .

Rule r [[ A1; . . . ; Am ]] =⇒ A
Rule r 1 [[ B1; . . . ; Bn ]] =⇒ B
Substitution σ(B) ≡ σ(A1)
r[OF r 1] σ( [[ B1; . . . ; Bn; A2; . . . ; Am ]] =⇒ A)

29



Clarifying the goal

30



Clarifying the goal

• apply(clarify)
Repeated application of safe rules
without splitting the goal
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Clarifying the goal

• apply(clarify)
Repeated application of safe rules
without splitting the goal

• apply(clarsimp simp add: . . . )
Combination of clarify and simp.

30



Demo: proof methods
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