
HOL: Propositional Logic

1

Overview

• Natural deduction
• Rule application in Isabelle/HOL

2

Rule notation

A1 . . . An

A instead of [[A1 . . . An]] =⇒ A

3

Natural Deduction

4

Natural deduction

Two kinds of rules for each logical operator ⊕:

5

Natural deduction

Two kinds of rules for each logical operator ⊕:

Introduction: how can I prove A ⊕ B?

5

Natural deduction

Two kinds of rules for each logical operator ⊕:

Introduction: how can I prove A ⊕ B?

Elimination: what can I prove from A ⊕ B?

5

Natural deduction for propositional logic

A ∧ B
conjI conjE

disjI1/2 disjE

impI impE

iffI iffD1 iffD2

notI notE

6

Natural deduction for propositional logic

A B
A ∧ B

conjI conjE

disjI1/2 disjE

impI impE

iffI iffD1 iffD2

notI notE

6

Natural deduction for propositional logic

A B
A ∧ B

conjI conjE

A ∨ B A ∨ B
disjI1/2 disjE

impI impE

iffI iffD1 iffD2

notI notE

6

Natural deduction for propositional logic

A B
A ∧ B

conjI conjE

A
A ∨ B

B
A ∨ B

disjI1/2 disjE

impI impE

iffI iffD1 iffD2

notI notE

6

Natural deduction for propositional logic

A B
A ∧ B

conjI conjE

A
A ∨ B

B
A ∨ B

disjI1/2 disjE

A −→ B
impI impE

iffI iffD1 iffD2

notI notE

6

Natural deduction for propositional logic

A B
A ∧ B

conjI conjE

A
A ∨ B

B
A ∨ B

disjI1/2 disjE

A =⇒ B
A −→ B

impI impE

iffI iffD1 iffD2

notI notE

6

Natural deduction for propositional logic

A B
A ∧ B

conjI conjE

A
A ∨ B

B
A ∨ B

disjI1/2 disjE

A =⇒ B
A −→ B

impI impE

A = B iffI iffD1 iffD2

notI notE

6

Natural deduction for propositional logic

A B
A ∧ B

conjI conjE

A
A ∨ B

B
A ∨ B

disjI1/2 disjE

A =⇒ B
A −→ B

impI impE

A =⇒ B B =⇒ A
A = B iffI iffD1 iffD2

notI notE

6

Natural deduction for propositional logic

A B
A ∧ B

conjI conjE

A
A ∨ B

B
A ∨ B

disjI1/2 disjE

A =⇒ B
A −→ B

impI impE

A =⇒ B B =⇒ A
A = B iffI iffD1 iffD2

¬ A
notI notE

6

Natural deduction for propositional logic

A B
A ∧ B

conjI conjE

A
A ∨ B

B
A ∨ B

disjI1/2 disjE

A =⇒ B
A −→ B

impI impE

A =⇒ B B =⇒ A
A = B iffI iffD1 iffD2

A =⇒ False
¬ A

notI notE

6

Natural deduction for propositional logic

A B
A ∧ B

conjI
A ∧ B

C
conjE

A
A ∨ B

B
A ∨ B

disjI1/2 disjE

A =⇒ B
A −→ B

impI impE

A =⇒ B B =⇒ A
A = B iffI iffD1 iffD2

A =⇒ False
¬ A

notI notE

6

Natural deduction for propositional logic

A B
A ∧ B

conjI
A ∧ B [[A;B]] =⇒ C

C
conjE

A
A ∨ B

B
A ∨ B

disjI1/2 disjE

A =⇒ B
A −→ B

impI impE

A =⇒ B B =⇒ A
A = B iffI iffD1 iffD2

A =⇒ False
¬ A

notI notE

6

Natural deduction for propositional logic

A B
A ∧ B

conjI
A ∧ B [[A;B]] =⇒ C

C
conjE

A
A ∨ B

B
A ∨ B

disjI1/2 A ∨ B
C

disjE

A =⇒ B
A −→ B

impI impE

A =⇒ B B =⇒ A
A = B iffI iffD1 iffD2

A =⇒ False
¬ A

notI notE

6

Natural deduction for propositional logic

A B
A ∧ B

conjI
A ∧ B [[A;B]] =⇒ C

C
conjE

A
A ∨ B

B
A ∨ B

disjI1/2 A ∨ B A =⇒ C B =⇒ C
C

disjE

A =⇒ B
A −→ B

impI impE

A =⇒ B B =⇒ A
A = B iffI iffD1 iffD2

A =⇒ False
¬ A

notI notE

6

Natural deduction for propositional logic

A B
A ∧ B

conjI
A ∧ B [[A;B]] =⇒ C

C
conjE

A
A ∨ B

B
A ∨ B

disjI1/2 A ∨ B A =⇒ C B =⇒ C
C

disjE

A =⇒ B
A −→ B

impI A −→ B
C

impE

A =⇒ B B =⇒ A
A = B iffI iffD1 iffD2

A =⇒ False
¬ A

notI notE

6

Natural deduction for propositional logic

A B
A ∧ B

conjI
A ∧ B [[A;B]] =⇒ C

C
conjE

A
A ∨ B

B
A ∨ B

disjI1/2 A ∨ B A =⇒ C B =⇒ C
C

disjE

A =⇒ B
A −→ B

impI A −→ B A B =⇒ C
C

impE

A =⇒ B B =⇒ A
A = B iffI iffD1 iffD2

A =⇒ False
¬ A

notI notE

6

Natural deduction for propositional logic

A B
A ∧ B

conjI
A ∧ B [[A;B]] =⇒ C

C
conjE

A
A ∨ B

B
A ∨ B

disjI1/2 A ∨ B A =⇒ C B =⇒ C
C

disjE

A =⇒ B
A −→ B

impI A −→ B A B =⇒ C
C

impE

A =⇒ B B =⇒ A
A = B iffI A=B iffD1 A=B iffD2

A =⇒ False
¬ A

notI notE

6

Natural deduction for propositional logic

A B
A ∧ B

conjI
A ∧ B [[A;B]] =⇒ C

C
conjE

A
A ∨ B

B
A ∨ B

disjI1/2 A ∨ B A =⇒ C B =⇒ C
C

disjE

A =⇒ B
A −→ B

impI A −→ B A B =⇒ C
C

impE

A =⇒ B B =⇒ A
A = B iffI A=B

A =⇒ B iffD1 A=B
B =⇒ A iffD2

A =⇒ False
¬ A

notI notE

6

Natural deduction for propositional logic

A B
A ∧ B

conjI
A ∧ B [[A;B]] =⇒ C

C
conjE

A
A ∨ B

B
A ∨ B

disjI1/2 A ∨ B A =⇒ C B =⇒ C
C

disjE

A =⇒ B
A −→ B

impI A −→ B A B =⇒ C
C

impE

A =⇒ B B =⇒ A
A = B iffI A=B

A =⇒ B iffD1 A=B
B =⇒ A iffD2

A =⇒ False
¬ A

notI ¬ A
C

notE

6

Natural deduction for propositional logic

A B
A ∧ B

conjI
A ∧ B [[A;B]] =⇒ C

C
conjE

A
A ∨ B

B
A ∨ B

disjI1/2 A ∨ B A =⇒ C B =⇒ C
C

disjE

A =⇒ B
A −→ B

impI A −→ B A B =⇒ C
C

impE

A =⇒ B B =⇒ A
A = B iffI A=B

A =⇒ B iffD1 A=B
B =⇒ A iffD2

A =⇒ False
¬ A

notI ¬ A A
C

notE

6

Operational reading

A1 . . . An

A

7

Operational reading

A1 . . . An

A

Introduction rule:
To prove A it suffices to prove A1 . . . An.

7

Operational reading

A1 . . . An

A

Introduction rule:
To prove A it suffices to prove A1 . . . An.

Elimination rule
If I know A1 and want to prove A

it suffices to prove A2 . . . An.

7

Equality

t = t refl
s = t
t = s

sym r = s s = t
r = t trans

8

Equality

t = t refl
s = t
t = s

sym r = s s = t
r = t trans

s = t A(s)
A(t)

subst

8

Equality

t = t refl
s = t
t = s

sym r = s s = t
r = t trans

s = t A(s)
A(t)

subst

Rarely needed explicitly — used implicitly by simp

8

More rules

A −→ B A
B

mp

9

More rules

A −→ B A
B

mp

¬ A =⇒ False
A

ccontr ¬ A =⇒ A
A classical

9

More rules

A −→ B A
B

mp

¬ A =⇒ False
A

ccontr ¬ A =⇒ A
A classical

Remark:

ccontr and classical are not derivable from the
ND-rules.

9

More rules

A −→ B A
B

mp

¬ A =⇒ False
A

ccontr ¬ A =⇒ A
A classical

Remark:

ccontr and classical are not derivable from the
ND-rules.
They make the logic “classical”, i.e. “non-constructive”.

9

Proof by assumption

A1 . . . An

Ai

assumption

10

Rule application: the rough idea

Applying rule [[A1; . . . ; An]] =⇒ A to subgoal C:

11

Rule application: the rough idea

Applying rule [[A1; . . . ; An]] =⇒ A to subgoal C:
• Unify A and C

11

Rule application: the rough idea

Applying rule [[A1; . . . ; An]] =⇒ A to subgoal C:
• Unify A and C
• Replace C with n new subgoals A1 . . . An

11

Rule application: the rough idea

Applying rule [[A1; . . . ; An]] =⇒ A to subgoal C:
• Unify A and C
• Replace C with n new subgoals A1 . . . An

Working backwards, like in Prolog!

11

Rule application: the rough idea

Applying rule [[A1; . . . ; An]] =⇒ A to subgoal C:
• Unify A and C
• Replace C with n new subgoals A1 . . . An

Working backwards, like in Prolog!

Example: rule: [[?P; ?Q]] =⇒ ?P ∧ ?Q
subgoal: 1. A ∧ B

11

Rule application: the rough idea

Applying rule [[A1; . . . ; An]] =⇒ A to subgoal C:
• Unify A and C
• Replace C with n new subgoals A1 . . . An

Working backwards, like in Prolog!

Example: rule: [[?P; ?Q]] =⇒ ?P ∧ ?Q
subgoal: 1. A ∧ B

Result: 1. A
2. B

11

Rule application: the details

Rule: [[A1; . . . ; An]] =⇒ A
Subgoal: 1. [[B1; . . . ; Bm]] =⇒ C

12

Rule application: the details

Rule: [[A1; . . . ; An]] =⇒ A
Subgoal: 1. [[B1; . . . ; Bm]] =⇒ C

Substitution: σ(A) ≡ σ(C)

12

Rule application: the details

Rule: [[A1; . . . ; An]] =⇒ A
Subgoal: 1. [[B1; . . . ; Bm]] =⇒ C

Substitution: σ(A) ≡ σ(C)
New subgoals: 1. σ([[B1; . . . ; Bm]] =⇒ A1)

...
n. σ([[B1; . . . ; Bm]] =⇒ An)

12

Rule application: the details

Rule: [[A1; . . . ; An]] =⇒ A
Subgoal: 1. [[B1; . . . ; Bm]] =⇒ C

Substitution: σ(A) ≡ σ(C)
New subgoals: 1. σ([[B1; . . . ; Bm]] =⇒ A1)

...
n. σ([[B1; . . . ; Bm]] =⇒ An)

Command:

apply(rule <rulename>)

12

Proof by assumption

apply assumption
proves

1. [[B1; . . . ; Bm]] =⇒ C

by unifying C with one of the Bi

13

Proof by assumption

apply assumption
proves

1. [[B1; . . . ; Bm]] =⇒ C

by unifying C with one of the Bi (backtracking!)

13

Applying elimination rules

apply(erule <elim-rule>)

Like rule but also
• unifies first premise of rule with an assumption
• eliminates that assumption

14

Applying elimination rules

apply(erule <elim-rule>)

Like rule but also
• unifies first premise of rule with an assumption
• eliminates that assumption

Example:
Rule: [[?P ∧ ?Q; [[?P; ?Q]] =⇒ ?R]] =⇒ ?R

Subgoal: 1. [[X; A ∧ B; Y]] =⇒ Z

14

Applying elimination rules

apply(erule <elim-rule>)

Like rule but also
• unifies first premise of rule with an assumption
• eliminates that assumption

Example:
Rule: [[?P ∧ ?Q; [[?P; ?Q]] =⇒ ?R]] =⇒ ?R

Subgoal: 1. [[X; A ∧ B; Y]] =⇒ Z
Unification: ?P ∧ ?Q ≡ A ∧ B and ?R ≡ Z

14

Applying elimination rules

apply(erule <elim-rule>)

Like rule but also
• unifies first premise of rule with an assumption
• eliminates that assumption

Example:
Rule: [[?P ∧ ?Q; [[?P; ?Q]] =⇒ ?R]] =⇒ ?R

Subgoal: 1. [[X; A ∧ B; Y]] =⇒ Z
Unification: ?P ∧ ?Q ≡ A ∧ B and ?R ≡ Z

New subgoal: 1. [[X; Y]] =⇒ [[A; B]] =⇒ Z

14

Applying elimination rules

apply(erule <elim-rule>)

Like rule but also
• unifies first premise of rule with an assumption
• eliminates that assumption

Example:
Rule: [[?P ∧ ?Q; [[?P; ?Q]] =⇒ ?R]] =⇒ ?R

Subgoal: 1. [[X; A ∧ B; Y]] =⇒ Z
Unification: ?P ∧ ?Q ≡ A ∧ B and ?R ≡ Z

New subgoal: 1. [[X; Y]] =⇒ [[A; B]] =⇒ Z
same as: 1. [[X; Y; A; B]] =⇒ Z

14

How to prove it by natural deduction

• Intro rules decompose formulae to the right of =⇒.

apply(rule <intro-rule>)

15

How to prove it by natural deduction

• Intro rules decompose formulae to the right of =⇒.

apply(rule <intro-rule>)
• Elim rules decompose formulae on the left of =⇒.

apply(erule <elim-rule>)

15

Demo: propositional proofs

16

=⇒ vs −→

To facilitate application of theorems:

write them like this [[A1; . . . ; An]] =⇒ A
not like this A1 ∧ . . . ∧ An −→ A

17

HOL: Predicate Logic

18

Parameters

Subgoal:

1.
∧

x1 . . . xn. Formula

The x i are called parameters of the subgoal.
Intuition: local constants, i.e. arbitrary but fixed values.

19

Parameters

Subgoal:

1.
∧

x1 . . . xn. Formula

The x i are called parameters of the subgoal.
Intuition: local constants, i.e. arbitrary but fixed values.

Rules are automatically lifted over
∧

x1 . . . xn and applied
directly to Formula.

19

Scope

• Scope of parameters: whole subgoal
• Scope of ∀ , ∃ , . . . : ends with ; or =⇒

20

Scope

• Scope of parameters: whole subgoal
• Scope of ∀ , ∃ , . . . : ends with ; or =⇒

∧
x y. [[∀ y. P y −→ Q z y; Q x y]] =⇒ ∃ x. Q x y

means
∧

x y. [[(∀ y1. P y1 −→ Q z y1); Q x y]] =⇒ ∃ x1. Q x1 y

20

α-Conversion

Bound variables are renamed automatically to avoid name
clashes with other variables.

21

Natural deduction for quantifiers

∀ x. P(x)
allI allE

exI exE

22

Natural deduction for quantifiers

∧
x. P(x)

∀ x. P(x)
allI allE

exI exE

22

Natural deduction for quantifiers

∧
x. P(x)

∀ x. P(x)
allI allE

∃ x. P(x)
exI exE

22

Natural deduction for quantifiers

∧
x. P(x)

∀ x. P(x)
allI allE

P(?x)
∃ x. P(x)

exI exE

22

Natural deduction for quantifiers

∧
x. P(x)

∀ x. P(x)
allI

∀ x. P(x)
R allE

P(?x)
∃ x. P(x)

exI exE

22

Natural deduction for quantifiers

∧
x. P(x)

∀ x. P(x)
allI

∀ x. P(x) P(?x) =⇒ R
R allE

P(?x)
∃ x. P(x)

exI exE

22

Natural deduction for quantifiers

∧
x. P(x)

∀ x. P(x)
allI

∀ x. P(x) P(?x) =⇒ R
R allE

P(?x)
∃ x. P(x)

exI
∃ x. P(x)

R
exE

22

Natural deduction for quantifiers

∧
x. P(x)

∀ x. P(x)
allI

∀ x. P(x) P(?x) =⇒ R
R allE

P(?x)
∃ x. P(x)

exI
∃ x. P(x)

∧
x. P(x) =⇒ R
R

exE

22

Natural deduction for quantifiers

∧
x. P(x)

∀ x. P(x)
allI

∀ x. P(x) P(?x) =⇒ R
R allE

P(?x)
∃ x. P(x)

exI
∃ x. P(x)

∧
x. P(x) =⇒ R
R

exE

• allI and exE introduce new parameters (
∧

x).

22

Natural deduction for quantifiers

∧
x. P(x)

∀ x. P(x)
allI

∀ x. P(x) P(?x) =⇒ R
R allE

P(?x)
∃ x. P(x)

exI
∃ x. P(x)

∧
x. P(x) =⇒ R
R

exE

• allI and exE introduce new parameters (
∧

x).
• allE and exI introduce new unknowns (?x).

22

Instantiating rules

apply(rule_tac x = term in rule)

Like rule, but ?x in rule is instantiated by term before
application.

23

Instantiating rules

apply(rule_tac x = term in rule)

Like rule, but ?x in rule is instantiated by term before
application.

Similar: erule_tac

23

Instantiating rules

apply(rule_tac x = term in rule)

Like rule, but ?x in rule is instantiated by term before
application.

Similar: erule_tac

! x is in rule, not in the goal !

23

A quantifier proof

1. ∀a. ∃b. a = b

24

A quantifier proof

1. ∀a. ∃b. a = b
apply(rule allI)

24

A quantifier proof

1. ∀a. ∃b. a = b
apply(rule allI)
1.

∧
a. ∃b. a = b

24

A quantifier proof

1. ∀a. ∃b. a = b
apply(rule allI)
1.

∧
a. ∃b. a = b

apply(rule_tac x = "a" in exI)

24

A quantifier proof

1. ∀a. ∃b. a = b
apply(rule allI)
1.

∧
a. ∃b. a = b

apply(rule_tac x = "a" in exI)
1.

∧
a. a = a

24

A quantifier proof

1. ∀a. ∃b. a = b
apply(rule allI)
1.

∧
a. ∃b. a = b

apply(rule_tac x = "a" in exI)
1.

∧
a. a = a

apply(rule refl)

24

Demo: quantifier proofs

25

More proof methods

26

Forward proofs: frule and drule

“Forward” rule: A1 =⇒ A
Subgoal: 1. [[B1; . . . ; Bn]] =⇒ C

27

Forward proofs: frule and drule

“Forward” rule: A1 =⇒ A
Subgoal: 1. [[B1; . . . ; Bn]] =⇒ C
Substitution: σ(Bi) ≡ σ(A1)

27

Forward proofs: frule and drule

“Forward” rule: A1 =⇒ A
Subgoal: 1. [[B1; . . . ; Bn]] =⇒ C
Substitution: σ(Bi) ≡ σ(A1)
New subgoal: 1. σ([[B1; . . . ; Bn; A]] =⇒ C)

27

Forward proofs: frule and drule

“Forward” rule: A1 =⇒ A
Subgoal: 1. [[B1; . . . ; Bn]] =⇒ C
Substitution: σ(Bi) ≡ σ(A1)
New subgoal: 1. σ([[B1; . . . ; Bn; A]] =⇒ C)

Command:
apply(frule rulename)

27

Forward proofs: frule and drule

“Forward” rule: A1 =⇒ A
Subgoal: 1. [[B1; . . . ; Bn]] =⇒ C
Substitution: σ(Bi) ≡ σ(A1)
New subgoal: 1. σ([[B1; . . . ; Bn; A]] =⇒ C)

Command:
apply(frule rulename)

Like frule but also deletes Bi:
apply(drule rulename)

27

frule and drule: the general case

Rule: [[A1; . . . ; Am]] =⇒ A

Creates additional subgoals:

1. σ([[B1; . . . ; Bn]] =⇒ A2)
...
m-1. σ([[B1; . . . ; Bn]] =⇒ Am)
m. σ([[B1; . . . ; Bn; A]] =⇒ C)

28

Forward proofs: OF

r[OF r 1 . . . rn]

Prove assumption 1 of theorem r with theorem r 1,
and assumption 2 with theorem r 2, and . . .

29

Forward proofs: OF

r[OF r 1 . . . rn]

Prove assumption 1 of theorem r with theorem r 1,
and assumption 2 with theorem r 2, and . . .

Rule r [[A1; . . . ; Am]] =⇒ A
Rule r 1 [[B1; . . . ; Bn]] =⇒ B
Substitution σ(B) ≡ σ(A1)
r[OF r 1]

29

Forward proofs: OF

r[OF r 1 . . . rn]

Prove assumption 1 of theorem r with theorem r 1,
and assumption 2 with theorem r 2, and . . .

Rule r [[A1; . . . ; Am]] =⇒ A
Rule r 1 [[B1; . . . ; Bn]] =⇒ B
Substitution σ(B) ≡ σ(A1)
r[OF r 1] σ([[B1; . . . ; Bn; A2; . . . ; Am]] =⇒ A)

29

Clarifying the goal

30

Clarifying the goal

• apply(clarify)
Repeated application of safe rules
without splitting the goal

30

Clarifying the goal

• apply(clarify)
Repeated application of safe rules
without splitting the goal

• apply(clarsimp simp add: . . .)
Combination of clarify and simp.

30

Demo: proof methods

31

		extcolor {darkblue}{Overview}
		extcolor {darkblue}{Rule notation}
		extcolor {darkblue}{Natural deduction}
		extcolor {darkblue}{Natural deduction for propositional logic}
		extcolor {darkblue}{Operational reading}
		extcolor {darkblue}{Equality}
		extcolor {darkblue}{More rules}
		extcolor {darkblue}{Proof by assumption}
		extcolor {darkblue}{Rule application: the rough idea}
		extcolor {darkblue}{Rule application: the details}
		extcolor {darkblue}{Proof by assumption}
		extcolor {darkblue}{Applying elimination rules}
		extcolor {darkblue}{How to prove it by natural deduction}
		extcolor {darkblue}{isa {{isasymLongrightarrow }} vs isa {{isasymlongrightarrow }}}
		extcolor {darkblue}{Parameters}
		extcolor {darkblue}{Scope}
		extcolor {darkblue}{$alpha $-Conversion}
		extcolor {darkblue}{Natural deduction for quantifiers}
		extcolor {darkblue}{Instantiating rules}
		extcolor {darkblue}{A quantifier proof}
		extcolor {darkblue}{Forward proofs: frule and drule}
		extcolor {darkblue}{frule and drule: the general case}
		extcolor {darkblue}{Forward proofs: OF}
		extcolor {darkblue}{Clarifying the goal}

