HOL: Propositional Logic



Overview

Natural deduction
Rule application in Isabelle/HOL



Rule notation

Instead of

(A ..

Ap] = A
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Natural deduction

Two kinds of rules for each logical operator &:
Introduction: how can | prove A ¢ B?
Elimination: what can | prove from A ¢ B?
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Natural deduction for propositional logic
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Operational reading

Ar.. A,
A

Introduction rule:
To prove A it suffices to prove A, ... A,.

Elimination rule
If | know A; and want to prove A
It suffices to prove A,... A,.
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Equality

s=t r=s s=t
sym
=g refl f=s Y —¢ Lrans
s=t A(S)
A Subst

Rarely needed explicitly — used implicitly by simp
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More rules

A—B A

B nm
ﬂA:;\ False ..ont ﬁAA:> A ¢| assi cal

Remark:

ccontr and cl assi cal are not derivable from the
ND-rules.
They make the logic “classical”, i.e. “non-constructive”.



Al

Proof by assumption

A, |
assunpti on

A;

10
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Rule application: the rough idea

Applying rule [ A;; ... ; A, | = Ato subgoal C:
Unify A and C
Replace C with n new subgoals A; ... A,
Working backwards, like in Prolog!

Example: rule: [?P; ?Q] = ?P A ?Q
subgoal: 1. AAB
Result: 1. A
2.B



Rule application: the detalls

A

Rule: [[Al, .o ,An]]
B C

. —
Subgoal: 1.[By;... ;B ] =
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Rule application: the details

Rule: [A;; ... ;AL ] = A
Subgoal: 1.[By; ... ;Bn]=C
Substitution: a(A) = o(C)
New subgoals:  1.0([Bi;... ;Bn] = Ay)
N.o([B1;... ;B ] = Ay)
Command:

apply(rule <rulename>)



Proof by assumption

apply assumption
proves

1.|By;... ;B |=C

by unifying C with one of the B;



Proof by assumption

apply assumption
proves

1.|By;... ;B |=C

by unifying C with one of the B, (backtracking!)
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Like rule but also
unifies first premise of rule with an assumption
eliminates that assumption

14



Applying elimination rules

apply(erule <elim-rule>)

Like rule but also
unifies first premise of rule with an assumption
eliminates that assumption

Example:
Rule: [?P A ?Q; [?P; ?Q] = ?R] = 7R
Subgoal: 1.[X;AAB)Y ]| =<2

14



Applying elimination rules

apply(erule <elim-rule>)

Like rule but also
unifies first premise of rule with an assumption
eliminates that assumption

Example:
Rule: [?P A ?Q; [?P; ?Q] = ?R] = 7R
Subgoal: 1.[X;AAB)Y ]| =<2
Unification: ?P A?Q=AABand?R =7

14



Applying elimination rules

apply(erule <elim-rule>)

Like rule but also
unifies first premise of rule with an assumption
eliminates that assumption

Example:

Rule: [?P A ?Q; [?P; ?Q] = ?R] = 7R
Subgoal: 1.[X;AAB)Y ]| =<2
Unification: ?P A?Q=AABand?R =7
New subgoal: 1.[X;Y | = [A;B]=Z
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Applying elimination rules

apply(erule <elim-rule>)

Like rule but also
unifies first premise of rule with an assumption

eliminates that assumption

Example:
Rule: [?P A ?Q; [?P; ?Q] = ?R] = 7R
Subgoal: 1.[X;AAB)Y ]| =<2
Unification: ?P A?Q=AABand?R =7
New subgoal: 1.[X;Y | = [A;B]=Z
sameas: L[ X;Y;A;B]=Z2

14



How to prove it by natural deduction

Intro rules decompose formulae to the right of —.
apply(rule <intro-rule>)
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How to prove it by natural deduction

Intro rules decompose formulae to the right of —.

apply(rule <intro-rule>)
Elim rules decompose formulae on the left of —-.
apply(erule <elim-rule>)

15



Demo: propositional proofs



—> VS —

To facilitate application of theorems:

write them like this [Aq; ...; A = A
not like this A, A ... NA, — A

17



HOL: Predicate Logic



Parameters

Subgoal:
1. AX1 ... X,. FOormula

The x; are called parameters of the subgoal.
Intuition: local constants, i.e. arbitrary but fixed values.
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Parameters

Subgoal:

1. AX1 ... X,. FOormula

The x; are called parameters of the subgoal.
Intuition: local constants, i.e. arbitrary but fixed values.

Rules are automatically lifted over Ax; ... x,, and applied
directly to Formula.

19
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Scope

Scope of parameters: whole subgoal
Scope of Vv, 3, ...: ends with ; or —

AXY. [VY.PYy —Qzy, QXxy]= 3IX. QXY
means

AXY. [(VY1.PyT — Qzyq); OXy]= 3IX1.QX 1Yy



a-Conversion

Bound variables are renamed automatically to avoid name
clashes with other variables.

21
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Natural deduction for quantifiers

AX. P(X) Al VX. P(X) P(?X) = R
vV X. P(X) R

P(?X) x| Ix. P(x) AX.P(X) = R
IX. P(X) R
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Natural deduction for quantifiers

AX. P(X) vVX. P(X) P(?X) = R

7. P(X) al | | R al | E
P(?X) Ix. P(x) AX.P(X) = R

IX. P(X) ex] R exE

al I I and exE introduce new parameters (/AX).
al | E and exl introduce new unknowns (?x).



Instantiating rules

apply(rule_tac x = term In rule)

Like rule, but ?x In rule IS instantiated by term before
application.
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Instantiating rules

apply(rule_tac x = term In rule)

Like rule, but ?x In rule IS instantiated by term before
application.

Similar: erule tac

! X 1S In rule, not in the goal '

23
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A quantifier proof

1.va.db.a=Db

apply(rule alll)

1. Aa. db.a=Db
apply(rule_tac x ="a" in exl)
1. N\a.a=a

apply(rule refl)



Demo: quantifier proofs
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Forward proofs: frule and drule

“Forward” rule: A; — A

Subgoal: 1.[By;... ;B ] =C
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Command:
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Forward proofs: frule and drule

“Forward” rule: A; — A

Subgoal: 1.[By;... ;B ] =C

Substitution: a(B;) = o(Ay)

New subgoal:  1.0([By;... ;B A] = C)
Command:

apply(frule rulename)

Like frule but also deletes B;:
apply(drule rulename)

27



frule and drule: the general case

Rule: TA,; ... ;AL ] = A
Creates additional subgoals:

.m-l. o([B1;... B, ] = An)
m.o([By;... ;B A] = C)



Forward proofs: OF

OFrq, ... 1,]

Prove assumption 1 of theorem r with theorem ry,
and assumption 2 with theorem r,, and ...
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Forward proofs: OF

OFrq, ... 1,]

Prove assumption 1 of theorem r with theorem ry,
and assumption 2 with theorem r,, and ...

Ruler [A; ... AL ] = A
Rule rq [Bi;... ;B,] =B
Substitution  ¢(B) = o(Aq)

[OF r4]
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Forward proofs: OF

OFrq, ... 1,]

Prove assumption 1 of theorem r with theorem ry,
and assumption 2 with theorem r,, and ...

Ruler [A; ... AL ] = A
Rule rq [Bi;... ;B,] =B
Substitution  ¢(B) = o(Aq)

[OF r4] o([B1;...;BnjAg; ... A ] = A)
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Clarifying the goal

apply(clarify)
Repeated application of safe rules

without splitting the goal



Clarifying the goal

apply(clarify)
Repeated application of safe rules

without splitting the goal

apply(clarsimp simp add: ...)
Combination of clarify and simp.



Demo: proof methods
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