
HOL: Propositional Logic

Overview

- Natural deduction
- Rule application in Isabelle/HOL

Rule notation

$$\frac{A_1 \dots A_n}{A}$$

instead of

$$[A_1 \dots A_n] \Rightarrow A$$

Natural Deduction

Natural deduction

Two kinds of rules for each logical operator \oplus :

Natural deduction

Two kinds of rules for each logical operator \oplus :

Introduction: how can I prove $A \oplus B$?

Natural deduction

Two kinds of rules for each logical operator \oplus :

Introduction: how can I prove $A \oplus B$?

Elimination: what can I prove from $A \oplus B$?

Natural deduction for propositional logic

$$\frac{}{A \wedge B} \text{conjI}$$
$$\frac{}{\quad \quad \quad} \text{conjE}$$
$$\frac{}{\quad \quad \quad} \text{disjI1/2}$$
$$\frac{}{\quad \quad \quad} \text{disjE}$$
$$\frac{}{\quad \quad \quad} \text{impl}$$
$$\frac{}{\quad \quad \quad} \text{impE}$$
$$\frac{}{\quad \quad \quad} \text{iffI}$$
$$\frac{}{\quad \quad \quad} \text{iffD1} \quad \frac{}{\quad \quad \quad} \text{iffD2}$$
$$\frac{}{\quad \quad \quad} \text{notI}$$
$$\frac{}{\quad \quad \quad} \text{notE}$$

Natural deduction for propositional logic

$$\frac{A \quad B}{A \wedge B} \text{conjI}$$

$$\frac{}{} \text{conjE}$$

$$\frac{}{} \text{disjI1/2}$$

$$\frac{}{} \text{disjE}$$

$$\frac{}{} \text{implI}$$

$$\frac{}{} \text{implE}$$

$$\frac{}{} \text{iffI}$$

$$\frac{}{} \text{iffD1} \quad \frac{}{} \text{iffD2}$$

$$\frac{}{} \text{notI}$$

$$\frac{}{} \text{notE}$$

Natural deduction for propositional logic

$$\frac{A \quad B}{A \wedge B} \text{ conjI}$$

$$\frac{}{} \text{ conjE}$$

$$\frac{}{A \vee B} \frac{}{A \vee B} \text{ disjI1/2}$$

$$\frac{}{} \text{ disjE}$$

$$\frac{}{} \text{ impl}$$

$$\frac{}{} \text{ impE}$$

$$\frac{}{} \text{ iffI}$$

$$\frac{}{} \text{ iffD1} \quad \frac{}{} \text{ iffD2}$$

$$\frac{}{} \text{ notI}$$

$$\frac{}{} \text{ notE}$$

Natural deduction for propositional logic

$$\frac{A \quad B}{A \wedge B} \text{ conjI}$$

conie

$$\frac{A}{A \vee B} \frac{B}{A \vee B} \text{ disjI1/2}$$

disse

_____ impl

impE

ifffI

_____ iffD1 _____ iffD2

_____ not I

— notE

Natural deduction for propositional logic

$$\frac{A \quad B}{A \wedge B} \text{ conjI}$$

$$\frac{}{A \wedge B} \text{ conjE}$$

$$\frac{\frac{A}{A \vee B} \quad \frac{B}{A \vee B}}{A \vee B} \text{ disjI1/2}$$

$$\frac{}{A \vee B} \text{ disjE}$$

$$\frac{}{A \rightarrow B} \text{ impI}$$

$$\frac{}{A \rightarrow B} \text{ impE}$$

$$\frac{}{\text{iffI}}$$

$$\frac{}{\text{iffD1}} \quad \frac{}{\text{iffD2}}$$

$$\frac{}{\text{notI}}$$

$$\frac{}{\text{notE}}$$

Natural deduction for propositional logic

$$\frac{A \quad B}{A \wedge B} \text{ conjI}$$

$$\frac{}{A \wedge B} \text{ conjE}$$

$$\frac{\frac{A}{A \vee B} \quad \frac{B}{A \vee B}}{A \vee B} \text{ disjI1/2}$$

$$\frac{}{A \vee B} \text{ disjE}$$

$$\frac{A \Rightarrow B}{A \rightarrow B} \text{ implI}$$

$$\frac{}{A \rightarrow B} \text{ impE}$$

$$\frac{}{A \Leftrightarrow B} \text{ iffI}$$

$$\frac{}{A \Leftrightarrow B} \text{ iffD1} \quad \frac{}{A \Leftrightarrow B} \text{ iffD2}$$

$$\frac{}{\neg A} \text{ notI}$$

$$\frac{}{\neg A} \text{ notE}$$

Natural deduction for propositional logic

$$\frac{A \quad B}{A \wedge B} \text{ conjI}$$

$$\frac{}{A \wedge B} \text{ conjE}$$

$$\frac{\frac{A}{A \vee B} \quad \frac{B}{A \vee B}}{A \vee B} \text{ disjI1/2}$$

$$\frac{}{A \vee B} \text{ disjE}$$

$$\frac{A \Rightarrow B}{A \rightarrow B} \text{ implI}$$

$$\frac{}{A \rightarrow B} \text{ impE}$$

$$\frac{}{A = B} \text{ iffI}$$

$$\frac{}{A = B} \text{ iffD1} \quad \frac{}{A = B} \text{ iffD2}$$

$$\frac{}{\neg A} \text{ notI}$$

$$\frac{}{\neg A} \text{ notE}$$

Natural deduction for propositional logic

$$\frac{A \quad B}{A \wedge B} \text{ conjI}$$

$$\frac{}{A \wedge B} \text{ conjE}$$

$$\frac{A}{A \vee B} \quad \frac{B}{A \vee B} \text{ disjI1/2}$$

$$\frac{}{A \vee B} \text{ disjE}$$

$$\frac{A \Rightarrow B}{A \rightarrow B} \text{ impI}$$

$$\frac{}{A \rightarrow B} \text{ impE}$$

$$\frac{A \Rightarrow B \quad B \Rightarrow A}{A = B} \text{ iffI}$$

$$\frac{}{A = B} \text{ iffD1} \quad \frac{}{A = B} \text{ iffD2}$$

$$\frac{}{\neg A} \text{ notI}$$

$$\frac{}{\neg A} \text{ notE}$$

Natural deduction for propositional logic

$$\frac{A \quad B}{A \wedge B} \text{ conjI}$$

$$\frac{}{A \wedge B} \text{ conjE}$$

$$\frac{A}{A \vee B} \quad \frac{B}{A \vee B} \text{ disjI1/2}$$

$$\frac{}{A \vee B} \text{ disjE}$$

$$\frac{A \Rightarrow B}{A \rightarrow B} \text{ impI}$$

$$\frac{}{A \rightarrow B} \text{ impE}$$

$$\frac{A \Rightarrow B \quad B \Rightarrow A}{A = B} \text{ iffI}$$

$$\frac{}{A = B} \text{ iffD1} \quad \frac{}{A = B} \text{ iffD2}$$

$$\frac{}{\neg A} \text{ notI}$$

$$\frac{}{\neg A} \text{ notE}$$

Natural deduction for propositional logic

$$\frac{A \quad B}{A \wedge B} \text{ conjI}$$

$$\text{----- conjE}$$

$$\frac{A}{A \vee B} \quad \frac{B}{A \vee B} \text{ disjI1/2}$$

$$\text{----- disjE}$$

$$\frac{A \Rightarrow B}{A \rightarrow B} \text{ impI}$$

$$\text{----- impE}$$

$$\frac{A \Rightarrow B \quad B \Rightarrow A}{A = B} \text{ iffI}$$

$$\text{----- iffD1} \quad \text{----- iffD2}$$

$$\frac{A \Rightarrow \text{False}}{\neg A} \text{ notI}$$

$$\text{----- note}$$

Natural deduction for propositional logic

$$\frac{A \quad B}{A \wedge B} \text{ conjI}$$

$$\frac{A \wedge B}{C} \text{ conjE}$$

$$\frac{A}{A \vee B} \quad \frac{B}{A \vee B} \text{ disjI1/2}$$

$$\text{disjE}$$

$$\frac{A \Rightarrow B}{A \rightarrow B} \text{ impI}$$

$$\text{impE}$$

$$\frac{A \Rightarrow B \quad B \Rightarrow A}{A = B} \text{ iffI}$$

$$\text{iffD1} \quad \text{iffD2}$$

$$\frac{A \Rightarrow \text{False}}{\neg A} \text{ notI}$$

$$\text{note}$$

Natural deduction for propositional logic

$$\frac{A \quad B}{A \wedge B} \text{ conjI}$$

$$\frac{A \wedge B \quad [A;B] \Rightarrow C}{C} \text{ conjE}$$

$$\frac{A \quad B}{A \vee B} \quad \frac{B}{A \vee B} \text{ disjI1/2}$$

$$\text{disjE}$$

$$\frac{A \Rightarrow B}{A \rightarrow B} \text{ impI}$$

$$\text{impE}$$

$$\frac{A \Rightarrow B \quad B \Rightarrow A}{A = B} \text{ iffI}$$

$$\text{iffD1} \quad \text{iffD2}$$

$$\frac{A \Rightarrow \text{False}}{\neg A} \text{ notI}$$

$$\text{note}$$

Natural deduction for propositional logic

$$\frac{A \quad B}{A \wedge B} \text{ conjI}$$

$$\frac{A}{A \vee B} \quad \frac{B}{A \vee B} \text{ disjI1/2}$$

$$\frac{A \Rightarrow B}{A \rightarrow B} \text{ impI}$$

$$\frac{A \Rightarrow B \quad B \Rightarrow A}{A = B} \text{ iffI}$$

$$\frac{A \Rightarrow \text{False}}{\neg A} \text{ notI}$$

$$\frac{A \wedge B \quad [A;B] \Rightarrow C}{C} \text{ conjE}$$

$$\frac{A \vee B}{C} \text{ disjE}$$

$$\frac{}{C} \text{ impE}$$

$$\frac{}{C} \text{ iffD1} \quad \frac{}{C} \text{ iffD2}$$

$$\frac{}{C} \text{ note}$$

Natural deduction for propositional logic

$$\frac{A \quad B}{A \wedge B} \text{ conjI}$$

$$\frac{A}{A \vee B} \quad \frac{B}{A \vee B} \text{ disjI1/2}$$

$$\frac{A \Rightarrow B}{A \rightarrow B} \text{ impI}$$

$$\frac{A \Rightarrow B \quad B \Rightarrow A}{A = B} \text{ iffI}$$

$$\frac{A \Rightarrow \text{False}}{\neg A} \text{ notI}$$

$$\frac{A \wedge B \quad [A;B] \Rightarrow C}{C} \text{ conjE}$$

$$\frac{A \vee B \quad A \Rightarrow C \quad B \Rightarrow C}{C} \text{ disjE}$$

$$\frac{}{} \text{ impE}$$

$$\frac{}{} \text{ iffD1} \quad \frac{}{} \text{ iffD2}$$

$$\frac{}{} \text{ note}$$

Natural deduction for propositional logic

$$\frac{A \quad B}{A \wedge B} \text{ conjI}$$

$$\frac{A}{A \vee B} \quad \frac{B}{A \vee B} \text{ disjI1/2}$$

$$\frac{A \Rightarrow B}{A \rightarrow B} \text{ impI}$$

$$\frac{A \Rightarrow B \quad B \Rightarrow A}{A = B} \text{ iffI}$$

$$\frac{A \Rightarrow \text{False}}{\neg A} \text{ notI}$$

$$\frac{A \wedge B \quad [A;B] \Rightarrow C}{C} \text{ conjE}$$

$$\frac{A \vee B \quad A \Rightarrow C \quad B \Rightarrow C}{C} \text{ disjE}$$

$$\frac{A \rightarrow B}{C} \text{ impE}$$

$$\text{_____ iffD1} \quad \text{_____ iffD2}$$

$$\text{_____ note}$$

Natural deduction for propositional logic

$$\frac{A \quad B}{A \wedge B} \text{ conjI}$$

$$\frac{A}{A \vee B} \quad \frac{B}{A \vee B} \text{ disjI1/2}$$

$$\frac{A \Rightarrow B}{A \rightarrow B} \text{ impI}$$

$$\frac{A \Rightarrow B \quad B \Rightarrow A}{A = B} \text{ iffI}$$

$$\frac{A \Rightarrow \text{False}}{\neg A} \text{ notI}$$

$$\frac{A \wedge B \quad [A;B] \Rightarrow C}{C} \text{ conjE}$$

$$\frac{A \vee B \quad A \Rightarrow C \quad B \Rightarrow C}{C} \text{ disjE}$$

$$\frac{A \rightarrow B \quad A \quad B \Rightarrow C}{C} \text{ impE}$$

$$\text{_____ iffD1} \quad \text{_____ iffD2}$$

$$\text{_____ note}$$

Natural deduction for propositional logic

$$\frac{A \quad B}{A \wedge B} \text{ conjI}$$

$$\frac{A}{A \vee B} \quad \frac{B}{A \vee B} \text{ disjI1/2}$$

$$\frac{A \Rightarrow B}{A \rightarrow B} \text{ impI}$$

$$\frac{A \Rightarrow B \quad B \Rightarrow A}{A = B} \text{ iffI}$$

$$\frac{A \Rightarrow \text{False}}{\neg A} \text{ notI}$$

$$\frac{A \wedge B \quad [A;B] \Rightarrow C}{C} \text{ conjE}$$

$$\frac{A \vee B \quad A \Rightarrow C \quad B \Rightarrow C}{C} \text{ disjE}$$

$$\frac{A \rightarrow B \quad A \quad B \Rightarrow C}{C} \text{ impE}$$

$$\frac{A=B}{\text{iffD1}} \quad \frac{A=B}{\text{iffD2}}$$

———— note

Natural deduction for propositional logic

$$\frac{A \quad B}{A \wedge B} \text{ conjI}$$

$$\frac{A}{A \vee B} \quad \frac{B}{A \vee B} \text{ disjI1/2}$$

$$\frac{A \Rightarrow B}{A \rightarrow B} \text{ impI}$$

$$\frac{A \Rightarrow B \quad B \Rightarrow A}{A = B} \text{ iffI}$$

$$\frac{A \Rightarrow \text{False}}{\neg A} \text{ notI}$$

$$\frac{A \wedge B \quad \llbracket A; B \rrbracket \Rightarrow C}{C} \text{ conjE}$$

$$\frac{A \vee B \quad A \Rightarrow C \quad B \Rightarrow C}{C} \text{ disjE}$$

$$\frac{A \rightarrow B \quad A \quad B \Rightarrow C}{C} \text{ impE}$$

$$\frac{A=B}{A \Rightarrow B} \text{ iffD1} \quad \frac{A=B}{B \Rightarrow A} \text{ iffD2}$$

————— note

Natural deduction for propositional logic

$$\frac{A \quad B}{A \wedge B} \text{ conjI}$$

$$\frac{A}{A \vee B} \quad \frac{B}{A \vee B} \text{ disjI1/2}$$

$$\frac{A \Rightarrow B}{A \rightarrow B} \text{ impI}$$

$$\frac{A \Rightarrow B \quad B \Rightarrow A}{A = B} \text{ iffI}$$

$$\frac{A \Rightarrow \text{False}}{\neg A} \text{ notI}$$

$$\frac{A \wedge B \quad \llbracket A; B \rrbracket \Rightarrow C}{C} \text{ conjE}$$

$$\frac{A \vee B \quad A \Rightarrow C \quad B \Rightarrow C}{C} \text{ disjE}$$

$$\frac{A \rightarrow B \quad A \quad B \Rightarrow C}{C} \text{ impE}$$

$$\frac{A=B}{A \Rightarrow B} \text{ iffD1} \quad \frac{A=B}{B \Rightarrow A} \text{ iffD2}$$

$$\frac{\neg A}{C} \text{ noteE}$$

Natural deduction for propositional logic

$$\frac{A \quad B}{A \wedge B} \text{ conjI}$$

$$\frac{A}{A \vee B} \quad \frac{B}{A \vee B} \text{ disjI1/2}$$

$$\frac{A \Rightarrow B}{A \rightarrow B} \text{ impI}$$

$$\frac{A \Rightarrow B \quad B \Rightarrow A}{A = B} \text{ iffI}$$

$$\frac{A \Rightarrow \text{False}}{\neg A} \text{ notI}$$

$$\frac{A \wedge B \quad [A;B] \Rightarrow C}{C} \text{ conjE}$$

$$\frac{A \vee B \quad A \Rightarrow C \quad B \Rightarrow C}{C} \text{ disjE}$$

$$\frac{A \rightarrow B \quad A \quad B \Rightarrow C}{C} \text{ impE}$$

$$\frac{A=B}{A \Rightarrow B} \text{ iffD1} \quad \frac{A=B}{B \Rightarrow A} \text{ iffD2}$$

$$\frac{\neg A \quad A}{C} \text{ noteE}$$

Operational reading

$$\frac{A_1 \dots A_n}{A}$$

Operational reading

$$\frac{A_1 \dots A_n}{A}$$

Introduction rule:

To prove A it suffices to prove $A_1 \dots A_n$.

Operational reading

$$\frac{A_1 \dots A_n}{A}$$

Introduction rule:

To prove A it suffices to prove $A_1 \dots A_n$.

Elimination rule

If I know A_1 and want to prove A
it suffices to prove $A_2 \dots A_n$.

Equality

$$\overline{t = t} \text{ refl}$$

$$\frac{s = t}{t = s} \text{ sym}$$

$$\frac{r = s \quad s = t}{r = t} \text{ trans}$$

Equality

$$\overline{t = t} \text{ refl}$$

$$\frac{s = t}{t = s} \text{ sym}$$

$$\frac{r = s \quad s = t}{r = t} \text{ trans}$$

$$\frac{s = t \quad A(s)}{A(t)} \text{ subst}$$

Equality

$$\frac{}{t = t} \text{ refl} \quad \frac{s = t}{t = s} \text{ sym} \quad \frac{r = s \quad s = t}{r = t} \text{ trans}$$

$$\frac{s = t \quad A(s)}{A(t)} \text{ subst}$$

Rarely needed explicitly — used implicitly by *simp*

More rules

$$\frac{A \longrightarrow B \quad A}{B} \text{ mp}$$

More rules

$$\frac{A \longrightarrow B \quad A}{B} \text{ mp}$$

$$\frac{\neg A \Rightarrow \text{False}}{A} \text{ ccontr} \quad \frac{\neg A \Rightarrow A}{A} \text{ classical}$$

More rules

$$\frac{A \rightarrow B \quad A}{B} \text{ mp}$$

$$\frac{\neg A \Rightarrow \text{False}}{A} \text{ ccontr} \quad \frac{\neg A \Rightarrow A}{A} \text{ classical}$$

Remark:

ccontr and classical are not derivable from the ND-rules.

More rules

$$\frac{A \rightarrow B \quad A}{B} \text{ mp}$$

$$\frac{\neg A \Rightarrow \text{False}}{A} \text{ ccontr} \quad \frac{\neg A \Rightarrow A}{A} \text{ classical}$$

Remark:

ccontr and classical are not derivable from the ND-rules.

They make the logic “classical”, i.e. “non-constructive”.

Proof by assumption

$$\frac{A_1 \quad \dots \quad A_n}{A_i} \text{ assumption}$$

Rule application: the rough idea

Applying rule $\llbracket A_1 ; \dots ; A_n \rrbracket \rightarrow A$ to subgoal C :

Rule application: the rough idea

Applying rule $\llbracket A_1 ; \dots ; A_n \rrbracket \rightarrow A$ to subgoal C :

- Unify A and C

Rule application: the rough idea

Applying rule $\llbracket A_1; \dots; A_n \rrbracket \rightarrow A$ to subgoal C :

- Unify A and C
- Replace C with n new subgoals $A_1 \dots A_n$

Rule application: the rough idea

Applying rule $\llbracket A_1; \dots; A_n \rrbracket \rightarrow A$ to subgoal C :

- Unify A and C
- Replace C with n new subgoals $A_1 \dots A_n$

Working backwards, like in Prolog!

Rule application: the rough idea

Applying rule $\llbracket A_1; \dots; A_n \rrbracket \implies A$ to subgoal C :

- Unify A and C
- Replace C with n new subgoals $A_1 \dots A_n$

Working backwards, like in Prolog!

Example: rule: $\llbracket ?P; ?Q \rrbracket \implies ?P \wedge ?Q$

subgoal: 1. $A \wedge B$

Rule application: the rough idea

Applying rule $\llbracket A_1; \dots; A_n \rrbracket \implies A$ to subgoal C :

- Unify A and C
- Replace C with n new subgoals $A_1 \dots A_n$

Working backwards, like in Prolog!

Example: rule: $\llbracket ?P; ?Q \rrbracket \implies ?P \wedge ?Q$

subgoal: 1. $A \wedge B$

Result: 1. A

2. B

Rule application: the details

Rule:

$$[\![A_1; \dots ; A_n]\!] \Rightarrow A$$

Subgoal:

$$1. [\![B_1; \dots ; B_m]\!] \Rightarrow C$$

Rule application: the details

Rule:

$$[\![A_1; \dots ; A_n]\!] \Rightarrow A$$

Subgoal:

$$1. [\![B_1; \dots ; B_m]\!] \Rightarrow C$$

Substitution:

$$\sigma(A) \equiv \sigma(C)$$

Rule application: the details

Rule:

$$[\![A_1; \dots ; A_n]\!] \Rightarrow A$$

Subgoal:

$$1. [\![B_1; \dots ; B_m]\!] \Rightarrow C$$

Substitution:

$$\sigma(A) \equiv \sigma(C)$$

New subgoals:

$$1. \sigma([\![B_1; \dots ; B_m]\!] \Rightarrow A_1)$$

⋮

$$n. \sigma([\![B_1; \dots ; B_m]\!] \Rightarrow A_n)$$

Rule application: the details

Rule:

$$[\![A_1; \dots ; A_n]\!] \Rightarrow A$$

Subgoal:

$$1. [\![B_1; \dots ; B_m]\!] \Rightarrow C$$

Substitution:

$$\sigma(A) \equiv \sigma(C)$$

New subgoals:

$$1. \sigma([\![B_1; \dots ; B_m]\!] \Rightarrow A_1)$$

⋮

$$n. \sigma([\![B_1; \dots ; B_m]\!] \Rightarrow A_n)$$

Command:

apply(rule <rulename>)

Proof by assumption

apply assumption

proves

$$1. \llbracket B_1; \dots; B_m \rrbracket \implies C$$

by unifying C with one of the B_i

Proof by assumption

apply assumption

proves

$$1. \llbracket B_1; \dots; B_m \rrbracket \implies C$$

by unifying C with one of the B_i (backtracking!)

Applying elimination rules

`apply(erule <elim-rule>)`

Like *rule* but also

- unifies first premise of rule with an assumption
- eliminates that assumption

Applying elimination rules

`apply(erule <elim-rule>)`

Like *rule* but also

- unifies first premise of rule with an assumption
- eliminates that assumption

Example:

Rule: $\llbracket ?P \wedge ?Q; \llbracket ?P; ?Q \rrbracket \Rightarrow ?R \rrbracket \Rightarrow ?R$

Subgoal: 1. $\llbracket X; A \wedge B; Y \rrbracket \Rightarrow Z$

Applying elimination rules

`apply(erule <elim-rule>)`

Like *rule* but also

- unifies first premise of rule with an assumption
- eliminates that assumption

Example:

Rule: $\llbracket ?P \wedge ?Q; \llbracket ?P; ?Q \rrbracket \Rightarrow ?R \rrbracket \Rightarrow ?R$

Subgoal: 1. $\llbracket X; A \wedge B; Y \rrbracket \Rightarrow Z$

Unification: $?P \wedge ?Q \equiv A \wedge B$ and $?R \equiv Z$

Applying elimination rules

`apply(erule <elim-rule>)`

Like *rule* but also

- unifies first premise of rule with an assumption
- eliminates that assumption

Example:

Rule: $\llbracket ?P \wedge ?Q; \llbracket ?P; ?Q \rrbracket \Rightarrow ?R \rrbracket \Rightarrow ?R$

Subgoal: 1. $\llbracket X; A \wedge B; Y \rrbracket \Rightarrow Z$

Unification: $?P \wedge ?Q \equiv A \wedge B$ and $?R \equiv Z$

New subgoal: 1. $\llbracket X; Y \rrbracket \Rightarrow \llbracket A; B \rrbracket \Rightarrow Z$

Applying elimination rules

`apply(erule <elim-rule>)`

Like *rule* but also

- unifies first premise of rule with an assumption
- eliminates that assumption

Example:

Rule: $\llbracket ?P \wedge ?Q; \llbracket ?P; ?Q \rrbracket \Rightarrow ?R \rrbracket \Rightarrow ?R$

Subgoal: 1. $\llbracket X; A \wedge B; Y \rrbracket \Rightarrow Z$

Unification: $?P \wedge ?Q \equiv A \wedge B$ and $?R \equiv Z$

New subgoal: 1. $\llbracket X; Y \rrbracket \Rightarrow \llbracket A; B \rrbracket \Rightarrow Z$

same as: 1. $\llbracket X; Y; A; B \rrbracket \Rightarrow Z$

How to prove it by natural deduction

- **Intro** rules decompose formulae to the right of \Rightarrow .
 $\text{apply}(\text{rule } <\text{intro-rule}>)$

How to prove it by natural deduction

- **Intro** rules decompose formulae to the right of \Rightarrow .

apply(rule <intro-rule>)

- **Elim** rules decompose formulae on the left of \Rightarrow .

apply(erule <elim-rule>)

Demo: propositional proofs

$\implies \mathbf{vs} \longrightarrow$

To facilitate application of theorems:

write them like this $\llbracket A_1; \dots; A_n \rrbracket \implies A$

not like this $A_1 \wedge \dots \wedge A_n \longrightarrow A$

HOL: Predicate Logic

Parameters

Subgoal:

1. $\wedge x_1 \dots x_n. \textit{Formula}$

The x_i are called **parameters** of the subgoal.

Intuition: local constants, i.e. arbitrary but fixed values.

Parameters

Subgoal:

1. $\wedge x_1 \dots x_n. \textit{Formula}$

The x_i are called **parameters** of the subgoal.

Intuition: local constants, i.e. arbitrary but fixed values.

Rules are automatically lifted over $\wedge x_1 \dots x_n$ and applied directly to *Formula*.

Scope

- Scope of parameters: whole subgoal
- Scope of \forall , \exists , ...: ends with ; or \Rightarrow

Scope

- Scope of parameters: whole subgoal
- Scope of \forall, \exists, \dots : ends with ; or \Rightarrow

$$\wedge x y. [\forall y. P y \longrightarrow Q z y; Q x y] \Rightarrow \exists x. Q x y$$

means

$$\wedge x y. [(\forall y_1. P y_1 \longrightarrow Q z y_1); Q x y] \Rightarrow \exists x_1. Q x_1 y$$

α -Conversion

Bound variables are renamed automatically to avoid name clashes with other variables.

Natural deduction for quantifiers

$$\frac{}{\forall x. P(x)} \text{ allI}$$

$$\frac{}{\text{allE}}$$

$$\frac{}{\text{exI}}$$

$$\frac{}{\text{exE}}$$

Natural deduction for quantifiers

$$\frac{\wedge x. P(x)}{\forall x. P(x)} \text{ allI}$$

$$\hline \text{allE}$$

$$\hline \text{exI}$$

$$\hline \text{exE}$$

Natural deduction for quantifiers

$$\frac{\bigwedge x. P(x)}{\forall x. P(x)} \text{ allI} \qquad \qquad \qquad \text{allE}$$

$$\frac{}{\exists x. P(x)} \text{ exI} \qquad \qquad \qquad \text{exE}$$

Natural deduction for quantifiers

$$\frac{\bigwedge x. P(x)}{\forall x. P(x)} \text{ allI} \qquad \qquad \qquad \text{allE}$$

$$\frac{P(?x)}{\exists x. P(x)} \text{ exI} \qquad \qquad \qquad \text{exE}$$

Natural deduction for quantifiers

$$\frac{\wedge x. P(x)}{\forall x. P(x)} \text{ allI}$$

$$\frac{P(?x)}{\exists x. P(x)} \text{ exI}$$

$$\frac{\forall x. P(x)}{R} \text{ allE}$$

$$\frac{}{\text{exE}} \text{ exE}$$

Natural deduction for quantifiers

$$\frac{\bigwedge x. P(x)}{\forall x. P(x)} \text{ allI}$$

$$\frac{\forall x. P(x) \quad P(?x) \Rightarrow R}{R} \text{ allE}$$

$$\frac{P(?x)}{\exists x. P(x)} \text{ exI}$$

$$\frac{}{\text{exE}} \text{ exE}$$

Natural deduction for quantifiers

$$\frac{\bigwedge x. P(x)}{\forall x. P(x)} \text{ allI}$$

$$\frac{P(?x)}{\exists x. P(x)} \text{ exI}$$

$$\frac{\forall x. P(x) \quad P(?x) \Rightarrow R}{R} \text{ allE}$$

$$\frac{\exists x. P(x)}{R} \text{ exE}$$

Natural deduction for quantifiers

$$\frac{\bigwedge x. P(x)}{\forall x. P(x)} \text{ allI}$$

$$\frac{P(?x)}{\exists x. P(x)} \text{ exI}$$

$$\frac{\forall x. P(x) \quad P(?x) \Rightarrow R}{R} \text{ allE}$$

$$\frac{\exists x. P(x) \quad \bigwedge x. P(x) \Rightarrow R}{R} \text{ exE}$$

Natural deduction for quantifiers

$$\frac{\bigwedge x. P(x)}{\forall x. P(x)} \text{ allI}$$

$$\frac{\forall x. P(x) \quad P(?x) \Rightarrow R}{R} \text{ allE}$$

$$\frac{P(?x)}{\exists x. P(x)} \text{ exI}$$

$$\frac{\exists x. P(x) \quad \bigwedge x. P(x) \Rightarrow R}{R} \text{ exE}$$

- allI and exE introduce new parameters (λx).

Natural deduction for quantifiers

$$\frac{\wedge x. P(x)}{\forall x. P(x)} \text{ allI}$$

$$\frac{\forall x. P(x) \quad P(?x) \Rightarrow R}{R} \text{ allE}$$

$$\frac{P(?x)}{\exists x. P(x)} \text{ exI}$$

$$\frac{\exists x. P(x) \quad \wedge x. P(x) \Rightarrow R}{R} \text{ exE}$$

- allI and exE introduce new parameters ($\wedge x$).
- allE and exI introduce new unknowns ($?x$).

Instantiating rules

apply(rule_tac x = *term* in *rule*)

Like *rule*, but $\text{?}x$ in *rule* is instantiated by *term* before application.

Instantiating rules

apply(rule_tac x = *term* in *rule*)

Like *rule*, but $\exists x$ in *rule* is instantiated by *term* before application.

Similar: **erule_tac**

Instantiating rules

apply(rule_tac x = *term* in *rule*)

Like *rule*, but $\text{?}x$ in *rule* is instantiated by *term* before application.

Similar: **erule_tac**

! x is in *rule*, not in the goal !

A quantifier proof

1. $\forall a. \exists b. a = b$

A quantifier proof

1. $\forall a. \exists b. a = b$

apply(rule all)

A quantifier proof

1. $\forall a. \exists b. a = b$

apply(rule allI)

1. $\wedge a. \exists b. a = b$

A quantifier proof

1. $\forall a. \exists b. a = b$

apply(rule_all)

1. $\wedge a. \exists b. a = b$

apply(rule_tac x = "a" in exl)

A quantifier proof

1. $\forall a. \exists b. a = b$

apply(rule_all)

1. $\wedge a. \exists b. a = b$

apply(rule_tac x = "a" in exl)

1. $\wedge a. a = a$

A quantifier proof

1. $\forall a. \exists b. a = b$

apply(rule allI)

1. $\wedge a. \exists b. a = b$

apply(rule_tac x = "a" in exI)

1. $\wedge a. a = a$

apply(rule refl)

Demo: quantifier proofs

More proof methods

Forward proofs: frule and drule

“Forward” rule: $A_1 \implies A$

Subgoal: 1. $\llbracket B_1; \dots; B_n \rrbracket \implies C$

Forward proofs: frule and drule

“Forward” rule: $A_1 \implies A$

Subgoal: $1. \llbracket B_1; \dots; B_n \rrbracket \implies C$

Substitution: $\sigma(B_i) \equiv \sigma(A_1)$

Forward proofs: frule and drule

“Forward” rule: $A_1 \implies A$

Subgoal: $1. \llbracket B_1; \dots; B_n \rrbracket \implies C$

Substitution: $\sigma(B_i) \equiv \sigma(A_1)$

New subgoal: $1. \sigma(\llbracket B_1; \dots; B_n; A \rrbracket) \implies C$

Forward proofs: frule and drule

“Forward” rule: $A_1 \Rightarrow A$

Subgoal: $1. \llbracket B_1; \dots; B_n \rrbracket \Rightarrow C$

Substitution: $\sigma(B_i) \equiv \sigma(A_1)$

New subgoal: $1. \sigma(\llbracket B_1; \dots; B_n; A \rrbracket) \Rightarrow C$

Command:

apply(*frule rulename*)

Forward proofs: frule and drule

“Forward” rule: $A_1 \implies A$

Subgoal: $1. \llbracket B_1; \dots; B_n \rrbracket \implies C$

Substitution: $\sigma(B_i) \equiv \sigma(A_1)$

New subgoal: $1. \sigma(\llbracket B_1; \dots; B_n; A \rrbracket) \implies C$

Command:

apply(*frule rulename*)

Like *frule* but also deletes B_i :

apply(*drule rulename*)

frule and drule: the general case

Rule: $\llbracket A_1; \dots; A_m \rrbracket \implies A$

Creates additional subgoals:

$$1. \sigma(\llbracket B_1; \dots; B_n \rrbracket \implies A_2)$$

\vdots

$$m-1. \sigma(\llbracket B_1; \dots; B_n \rrbracket \implies A_m)$$

$$m. \sigma(\llbracket B_1; \dots; B_n; A \rrbracket \implies C)$$

Forward proofs: OF

$$r[OF\ r_1 \dots\ r_n]$$

Prove assumption 1 of theorem r with theorem r_1 ,
and assumption 2 with theorem r_2 , and ...

Forward proofs: OF

$r[OF\ r_1 \dots\ r_n]$

Prove assumption 1 of theorem r with theorem r_1 ,
and assumption 2 with theorem r_2 , and ...

Rule r $\llbracket A_1; \dots; A_m \rrbracket \implies A$

Rule r_1 $\llbracket B_1; \dots; B_n \rrbracket \implies B$

Substitution $\sigma(B) \equiv \sigma(A_1)$

$r[OF\ r_1]$

Forward proofs: OF

$r[OF\ r_1 \dots\ r_n]$

Prove assumption 1 of theorem r with theorem r_1 ,
and assumption 2 with theorem r_2 , and ...

Rule r $\llbracket A_1; \dots; A_m \rrbracket \implies A$

Rule r_1 $\llbracket B_1; \dots; B_n \rrbracket \implies B$

Substitution $\sigma(B) \equiv \sigma(A_1)$

$r[OF\ r_1]$ $\sigma(\llbracket B_1; \dots; B_n; A_2; \dots; A_m \rrbracket \implies A)$

Clarifying the goal

Clarifying the goal

- **apply(clarify)**

Repeated application of safe rules
without splitting the goal

Clarifying the goal

- **apply(*clarify*)**
Repeated application of safe rules without splitting the goal
- **apply(*clarsimp simp add: ...*)**
Combination of *clarify* and *simp*.

Demo: proof methods