

Experiments in Verification SS 2011

Christian Sternagel

Computational Logic Institute of Computer Science University of Innsbruck

March 11, 2011

Today's Topics

- Organization
- Formal Verification
- Isabelle/HOL Basics
- Functional Programming in HOL

Organization

Lecture

- LV-Nr. 703523
- VO 1
- http://cl-informatik.uibk.ac.at/teaching/ss11/eve/
- slides are also available online
- office hours: Tuesday 12:00-14:00 in 3N01
- online registration required before 23:59 on March 31
- grading: semester project

Lecture

- LV-Nr. 703523
- VO 1
- http://cl-informatik.uibk.ac.at/teaching/ss11/eve/
- slides are also available online
- office hours: Tuesday 12:00-14:00 in 3N01
- online registration required before 23:59 on March 31
- grading: semester project

Schedule

The lecture is blocked to 4 sessions of 3 hours each. The sessions take place on:

session 1	March	11
session 2	March	25
session 3	April	1
session 4	April	15

The Project

- after last session (on April 15) projects will be distributed
- work alone or in small groups
- projects have to be finished before August 1
- on delivery you will have to answer questions about your project

Formal Verification

What is Verification?

- part of software testing process
- part of V&V (verification and validation)
 verification: built right (software meets specifications)
 validation: built right thing (software fulfills intended purpose)

What is Verification?

- part of software testing process
- part of V&V (verification and validation)
 verification: built right (software meets specifications)
 validation: built right thing (software fulfills intended purpose)

Formal Verification

Proving or disproving the correctness of intended algorithms with respect to a certain formal specification.

Model-Theoretic (Model Checking)

systematically exhaustive exploration of the mathematical model

Model-Theoretic (Model Checking)

systematically exhaustive exploration of the mathematical model

Proof-Theoretic (Logical Inference)

theorem proving software

given set of formulas $\Phi = \{\neg A, B \longrightarrow A, B\}$; check whether it is valid

given set of formulas $\Phi = \{\neg A, B \longrightarrow A, B\}$; check whether it is valid

Truth Table (Model-Theoretic)

Α	В	$\neg A$	$B \longrightarrow A$	φ
0	0	1	1	0
0	1	1	0	0
1	0	0	1	0
1	1	0	1	0

given set of formulas $\Phi = \{\neg A, B \longrightarrow A, B\}$; check whether it is valid

given set of formulas $\Phi = \{\neg A, B \longrightarrow A, B\}$; check whether it is valid

Natural Deduction Proof (Proof-Theoretic)

1	$\neg A$	premise
2	$B \longrightarrow A$	premise
3	В	premise
4	$\neg B$	MT 2, 1
5	\perp	¬e 3, 4

Model-Theoretic (Model Checking)

systematically exhaustive exploration of the mathematical model

Proof-Theoretic (Logical Inference)

theorem proving software

We focus on logical inference using Isabelle/HOL

Isabelle/HOL Basics

Isabelle/Pure generic proof assistant

Standard ML implementation language

Isabelle/HOL Higher-Order Logic

Isabelle/Pure generic proof assistant

Standard ML implementation language

Proof General Emacs interface

Isabelle/HOL Higher-Order Logic

Isabelle/Pure generic proof assistant

Standard ML implementation language

Higher-Order Logic

- HOL = Functional Programming + Logic
- datatypes (datatype)
- recursive functions (fun)
- logical operators (\land , \lor , \longrightarrow , \forall , \exists , ...)

Setup of the Isabelle System

- custom settings in file ~/.isabelle/Isabelle2011/etc/settings
- you will need at least: ISABELLE_DOC_FORMAT=pdf PDF_VIEWER=<program

Setup of the Isabelle System

- custom settings in file ~/.isabelle/Isabelle2011/etc/settings
- you will need at least: ISABELLE_DOC_FORMAT=pdf PDF_VIEWER=<program

Main Component

- isabelle doc: for documentation
- isabelle emacs: interactive proof development in ProofGeneral (i.e., \$ isabelle emacs (*File*).thy)
- isabelle jedit: interactive proof development in jEdit (i.e.,
 \$ isabelle jedit (*File*).thy)

Proof General – Useful Shortcuts

Ctrl+C, Ctrl+Backspace	undo and delete last step
Ctrl+C, Ctrl+B	go to bottom
Ctrl+C, Ctrl+C	interrupt process
Ctrl+C, Ctrl+F	find (lemmas, theorems, definitions,)
Ctrl+C, Ctrl+N	next step
Ctrl+C, Ctrl+Return	go to cursor position
Ctrl+C, Ctrl+U	undo last step
Ctrl+C, Ctrl+V	evaluate Isabelle command
Ctrl+C, Ctrl+W	clear output window
Ctrl+G	abort current emacs-command

Theory Files (*.thy) – General Structure

theory Name imports $T_1 \ldots T_n$ begin

end

Theory Files (*.thy) – General Structure

theory Name imports $T_1 \ldots T_n$ begin

... end

Explanation

- content of file Name.thy
- creates a new theory called Name
- depending on theories T_1 to T_n
- all proofs and definitions go between begin and end

Theory Files (*.thy) – General Structure

theory Name imports $T_1 \ldots T_n$ begin

.... end

Explanation

- content of file Name.thy
- creates a new theory called Name
- depending on theories T_1 to T_n
- all proofs and definitions go between begin and end

Example - Empty.thy

theory Empty imports Main begin end

$$\begin{array}{lll} \tau & \stackrel{\text{def}}{=} & \text{bool} \mid \texttt{nat} \mid \dots & \text{base types} \\ & \mid & \texttt{'a} \mid \texttt{'b} \mid \dots & \text{type variables} \\ & \mid & \tau = \texttt{>} \tau & \text{total functions} \\ & \mid & \tau * \tau & \text{pairs} \\ & \mid & \tau \text{ list} & \text{lists} \\ & \mid & \dots & \text{user-defined types} \end{array}$$

Remark (Function Type is Right-Associative) $\tau_1 \Rightarrow \tau_2 \Rightarrow \tau_3 \equiv \tau_1 \Rightarrow (\tau_2 \Rightarrow \tau_3)$

Examples – Types

 \mathtt{nat}

a natural number, e.g., 0

Examples – Types

nat nat => bool a natural number, e.g., 0 a predicate on nats, e.g., even
Examples – Types

nat
nat => bool
nat => nat => nat

a natural number, e.g., 0 a predicate on nats, e.g., even a binary function on nats, e.g., + Examples – Types

nat
nat => bool
nat => nat => nat
'a * 'b => 'a

a natural number, e.g., 0
a predicate on nats, e.g., even
a binary function on nats, e.g., +
a polymorphic function on pairs,
e.g., fst

Examples – Types

nat a natural number, e.g., 0
nat => bool a predicate on nats, e.g., even
nat => nat => nat a binary function on nats, e.g., +
'a * 'b => 'a a polymorphic function on pairs,
e.g., fst
('a => 'b) => 'a list => 'b list a higher-order function on lists,
e.g., map

Terms

```
t \stackrel{\text{def}}{=} \mathbf{x}
          t t
         %x.t
          if t then t else t
          let x = t in t
          case t of p \Rightarrow t \mid \ldots \mid p \Rightarrow t case - expressions
           . . .
```

constant or variable (identifier) function application lambda abstraction if-clauses let-bindings lots of syntactic sugar

where *p* is a *pattern*

Terms

```
t \stackrel{\text{def}}{=} x \qquad \qquad \text{constant or variable (identifier)} \\ | t t \qquad \qquad \text{function application} \\ | \%x.t \qquad \qquad \text{lambda abstraction} \\ | if t then t else t \qquad \qquad \text{if-clauses} \\ | let x = t in t \qquad \qquad \text{let-bindings} \\ | case t of p => t | \dots | p => t \qquad case - expressions \\ | \dots \qquad \qquad \qquad \text{lots of syntactic sugar} \end{cases}
```

where p is a pattern

Remark

often necessary to put parentheses around lambda abstractions, if-clauses, let-bindings, and case-expressions; in order to get priorities right

f x

function ${\tt f}$ applied to value ${\tt x}$

f x (%x. x + 1) function f applied to value $\ensuremath{\mathbb{x}}$ the anonymous successor function

Terms – Examples

fx (%x. x + 1)let s = (%x. x + 1) in s 0 application of successor to 0

function f applied to value x the anonymous successor function

Terms – Examples

f x (%x. x + 1)let s = (%x. x + 1) in s 0 application of successor to 0 (%p. case p of $(x, y) \Rightarrow x$) possible implementation of fst

function f applied to value x the anonymous successor function

Formulas (Terms of Type bool)

$$\varphi \stackrel{\text{def}}{=} \operatorname{True} | \operatorname{False} |$$
$$| \quad \tilde{\varphi} |$$
$$| \quad \varphi = \varphi |$$
$$| \quad \varphi \& \varphi | \varphi | \varphi | \varphi --> \varphi |$$
$$| \quad \operatorname{ALL} x. \varphi | \operatorname{EX} x. \varphi$$

Boolean constants negation equality binary operators quantifiers

Formulas (Terms of Type bool)

$$\varphi \stackrel{\text{def}}{=} \operatorname{True} | \operatorname{False} |$$
$$| \quad \tilde{\varphi} |$$
$$| \quad \varphi = \varphi |$$
$$| \quad \varphi \& \varphi | \varphi | \varphi | \varphi --> \varphi |$$
$$| \quad \operatorname{ALL} x. \varphi | \operatorname{EX} x. \varphi$$

Boolean constants negation equality binary operators quantifiers

Operator Precedence

= \succ \sim \succ & \succ | \succ --> \succ All, EX

~A | A

law of excluded middle

Formulas – Examples

~A | A False --> P law of excluded middle anything follows from False

Formulas – Examples

~A | A False --> P a = b & b = c --> a = c law of excluded middle anything follows from False transitivity of equality

Formulas – Examples

~A | A False --> P a = b & b = c --> a = c(ALL x. P x) = (~(EX x. ~(P x))) variant of *De Morgan's Law*

law of excluded middle anything follows from False transitivity of equality

- (t:: au) states that term t is of type au
- in presence of overloaded constants and functions (like 0 and +), sometimes necessary to add constraints

- (t:: au) states that term t is of type au
- in presence of overloaded constants and functions (like $\ensuremath{0}$ and
 - +), sometimes necessary to add constraints

- (t:: au) states that term t is of type au
- in presence of overloaded constants and functions (like 0 and +), sometimes necessary to add constraints

Examples

• (x::nat) + y, since + has type 'a => 'a => 'a

- (t:: au) states that term t is of type au
- in presence of overloaded constants and functions (like 0 and +), sometimes necessary to add constraints

Examples

- (x::nat) + y, since + has type 'a => 'a => 'a
- (0::nat) + y, since 0 has type 'a

- (t:: au) states that term t is of type au
- in presence of overloaded constants and functions (like 0 and +), sometimes necessary to add constraints

Examples

- (x::nat) + y, since + has type 'a => 'a => 'a
- (0::nat) + y, since 0 has type 'a
- Suc 0, no constraint necessary since Suc has type nat => nat

- free variables (blue in jEdit/ProofGeneral)
- **bound** variables (green in jEdit/ProofGeneral)
- schematic variables (dark blue in jEdit/ProofGeneral; have leading ?); can be replaced by arbitrary values

- free variables (blue in jEdit/ProofGeneral)
- **bound** variables (green in jEdit/ProofGeneral)
- schematic variables (dark blue in jEdit/ProofGeneral; have leading ?); can be replaced by arbitrary values

- free variables (blue in jEdit/ProofGeneral)
- **bound** variables (green in jEdit/ProofGeneral)
- schematic variables (dark blue in jEdit/ProofGeneral; have leading ?); can be replaced by arbitrary values

Examples

• in 'x + y', x and y are free

- free variables (blue in jEdit/ProofGeneral)
- **bound** variables (green in jEdit/ProofGeneral)
- schematic variables (dark blue in jEdit/ProofGeneral; have leading ?); can be replaced by arbitrary values

Examples

- in 'x + y', x and y are free
- in 'ALL x. *P* x', x is bound and *P* is free

- free variables (blue in jEdit/ProofGeneral)
- **bound** variables (green in jEdit/ProofGeneral)
- schematic variables (dark blue in jEdit/ProofGeneral; have leading ?); can be replaced by arbitrary values

Examples

- in 'x + y', x and y are free
- in 'ALL x. *P* x', x is bound and *P* is free
- in '(~~?P) = ?P', P is schematic

Functional Programming in HOL

An Introductory Theory - Session1.thy

theory Session1 imports Datatype begin

An Introductory Theory – Session1.thy

theory Session1 imports Datatype begin

l

A Datatype for Lists

datatype 'a list = "Nil"

"Cons" "'a" "'a list"

An Introductory Theory - Session1.thy

theory Session1 imports Datatype begin

A Datatype for Lists

Remark – Inner and Outer Syntax

- terms and types are inner syntax
- inner syntax has to be put between double quotes (but: double quotes around single identifiers may be dropped)

An Introductory Theory - Session1.thy

theory Session1 imports Datatype begin

A Datatype for Lists

Remark – Inner and Outer Syntax

- terms and types are inner syntax
- inner syntax has to be put between double quotes (but: double quotes around single identifiers may be dropped)

Syntactic Sugar for Lists – notation

notation Nil ("[]")
notation Cons (infixr "#" 65)

Syntactic Sugar for Lists – notation

notation Nil ("[]")
notation Cons (infixr "#" 65)

Syntactic Sugar for Lists – inlined

datatype 'a list = Nil ("[]") | Cons 'a "'a list" (infixr "#" 65)

Nil

corresponds to [] :: 'a list

Example Lists

Nil Cons (0::nat) Nil

corresponds to [] :: 'a list
corresponds to [0] :: nat list

Example Lists

Nil Cons (0::nat) Nil Cons 0 (Cons 1 Nil)

corresponds to [] :: 'a list
corresponds to [0] :: nat list
corresponds to [0,1] :: 'a list
Datatypes – The General Format

datatype
$$(\alpha_1, \ldots, \alpha_n)t = C_1 \tau_{11} \ldots \tau_{1k_1} | \ldots | C_m \tau_{m1} \ldots \tau_{mk_m}$$

- *α_i* parameters
- C_j constructor names

Datatypes – The General Format

datatype
$$(\alpha_1,\ldots,\alpha_n)t=C_1\ au_{11}\ \ldots\ au_{1k_1}\mid\ldots\mid C_m\ au_{m1}\ \ldots\ au_{mk_m}$$

- *α_i* parameters
- C_j constructor names

Every Datatype has . . .

- many lemmas proved automatically (e.g., ~([] = x#xs) for lists)
- a size function size :: t => nat
- an induction scheme
- a case analysis scheme

Functions on Datatypes – Primitive Recursion

• primitive recursion over datatype t uses equations of the form

$$f x_1 \ldots (C y_1 \ldots y_k) \ldots x_n = b$$

- where C is constructor of t
- all calls to f in b have form $f \ldots y_i \ldots$ for some i

Functions on Datatypes – Primitive Recursion

• primitive recursion over datatype t uses equations of the form

$$f x_1 \ldots (C y_1 \ldots y_k) \ldots x_n = b$$

- where C is constructor of t
- all calls to f in b have form $f \ldots y_i \ldots$ for some i

Intuition

- every recursive call removes one constructor symbol
- hence f terminates

Example – Concatenating two Lists

```
primrec
   append :: "'a list => 'a list => 'a list"
   (infixr "@" 65)
where
   "[] @ ys = ys"
   | "(x # xs) @ ys = x # (xs @ ys)"
```

Example – Reversing a List

primrec rev :: "'a list => 'a list" where
 "rev [] = []"
| "rev (x # xs) = rev xs @ (x # [])"

An Introductory Proof

"rev (rev xs) = xs"

Whiteboard

Some Diagnostic Commands

find_theorems $\langle args \rangle$ print_cases prop $\langle formula \rangle$ term $\langle term \rangle$ thm $\langle name \rangle$ typ $\langle type \rangle$ value $\langle term \rangle$ print all theorems matching $\langle args \rangle$ print currently available cases print proposition $\langle formula \rangle$ print term $\langle term \rangle$ and its type print theorem called $\langle name \rangle$ print type $\langle type \rangle$ evaluate and print $\langle term \rangle$

General Structure of a Proof

proposition $\stackrel{\text{def}}{=}$ (label:)? "term"

An Introductory Proof (cont'd)

lemma append_Nil2[simp]: "xs @ [] = xs"
by (induct xs) simp_all

```
lemma append_assoc[simp]:
    "(xs @ ys) @ zs = xs @ (ys @ zs)"
    by (induct xs) simp_all
```

```
lemma rev_append[simp]:
    "rev (xs @ ys) = rev ys @ rev xs"
    by (induct xs) simp_all
```

theorem rev_rev_ident[simp]: "rev (rev xs) = xs"
 by (induct xs) simp_all

Basic Types – Natural Numbers

Predefined Operations

- addition, subtraction (+, -)
- multiplication, division (*, div)
- modulo (mod)
- minimum, maximum (min, max)
- less than (or equal) (<, <=)

Basic Types – Pairs

- Pair :: 'a => 'b => 'a * 'b
- fst :: 'a * 'b => 'a
- snd :: 'a * 'b => 'b
- curry :: ('a * 'b => 'c) => 'a => 'b => 'c
- split :: ('a => 'b => 'c) => 'a * 'b => 'c

Basic Types – Option	
datatype 'a option =	None Some 'a

Basic Types – Option	
datatype 'a option = No	ne
	ne 'a

Predefined Operations

- the :: 'a option => 'a
- Option.set :: 'a option => 'a set

Definitions – Type Synonyms

introducing new names for existing types

Definitions – Type Synonyms

introducing new names for existing types

Examples

type_synonym number	=	nat
type_synonym <mark>gate</mark>	=	"bool => bool => bool"
type_synonym 'a plist	=	"('a * 'a) list"

Definitions – Constant Definitions

introducing new names for existing expressions

Definitions – Constant Definitions

introducing new names for existing expressions

Examples

definition nand :: gate
where "nand A B == ~(A & B)"

definition xor :: gate
where "xor A B == (A & ~B) | (~A & B)"

Definitions – Constant Definitions

introducing new names for existing expressions

Examples

Provided Lemmas

definition of constant $\langle const \rangle$ automatically provides lemma $\langle const \rangle_{def}$, stating equality between constant and its definition

The Definitional Approach

- only total functions are allowed ...
- or else

```
axiomatization f :: "nat => nat" where
  f_def: "f x = f x + 1"
lemma everything: "P"
proof
fix x
 have "f x = f x + 1" by (rule f_def)
 from this show "P" by simp
qed
lemma wrong: "0 = 1" by (rule everything)
```

Exercises

- 1. define a primitive recursive function length that computes the length of a list
- 2. prove "length (xs @ ys) = length xs + length ys"
- 3. define a primitive recursive function snoc that appends an element at the end of a list (do not use @)
- 4. prove "snoc (rev xs) x = rev (x # xs)"
- 5. define a primitive recursive function replace such that replace x y zs replaces all occurrences of x in the list zs by y
- 6. prove

```
"replace x y (rev zs) = rev (replace x y zs)"
```