Experiments in Verification SS 2011

Christian Sternagel

Computational Logic
Institute of Computer Science
University of Innsbruck

March 11, 2011

Today's Topics

- Organization
- Formal Verification
- Isabelle/HOL Basics
- Functional Programming in HOL

Organization

Lecture

- LV-Nr. 703523
- VO 1
- http://cl-informatik.uibk.ac.at/teaching/ss11/eve/
- slides are also available online
- office hours: Tuesday 12:00-14:00 in 3N01
- online registration required before 23:59 on March 31
- grading: semester project

Lecture

- LV-Nr. 703523
- VO 1
- http://cl-informatik.uibk.ac.at/teaching/ss11/eve/
- slides are also available online
- office hours: Tuesday 12:00-14:00 in 3N01
- online registration required before 23:59 on March 31
- grading: semester project

Schedule

The lecture is blocked to 4 sessions of 3 hours each. The sessions take place on:

session 1	March	11
session 2	March	25
session 3	April	1
session 4	April	15

The Project

- after last session (on April 15) projects will be distributed
- work alone or in small groups
- projects have to be finished before August 1
- on delivery you will have to answer questions about your project

Formal Verification

What is Verification?

- part of software testing process
- part of $\mathrm{V} \& \mathrm{~V}$ (verification and validation)
verification: built right (software meets specifications) validation: built right thing (software fulfills intended purpose)

What is Verification?

- part of software testing process
- part of V\&V (verification and validation)
verification: built right (software meets specifications) validation: built right thing (software fulfills intended purpose)

Formal Verification

Proving or disproving the correctness of intended algorithms with respect to a certain formal specification.

Model-Theoretic (Model Checking)

systematically exhaustive exploration of the mathematical model

Model-Theoretic (Model Checking)

systematically exhaustive exploration of the mathematical model

Proof-Theoretic (Logical Inference)
theorem proving software

Example - Verification

given set of formulas $\Phi=\{\neg A, B \longrightarrow A, B\}$; check whether it is valid

Example - Verification

given set of formulas $\Phi=\{\neg A, B \longrightarrow A, B\}$; check whether it is valid

Truth Table (Model-Theoretic)

A	B	$\neg A$	$B \longrightarrow A$	Φ
0	0	1	1	0
0	1	1	0	0
1	0	0	1	0
1	1	0	1	0

Example - Verification

given set of formulas $\Phi=\{\neg A, B \longrightarrow A, B\}$; check whether it is valid

Example - Verification

given set of formulas $\Phi=\{\neg A, B \longrightarrow A, B\}$; check whether it is valid

Natural Deduction Proof (Proof-Theoretic)

1	$\neg A$	premise
2	$B \longrightarrow A$	premise
3	B	premise
4	$\neg B$	MT 2,1
5	\perp	\neg e 3,4

Model-Theoretic (Model Checking)

systematically exhaustive exploration of the mathematical model

Proof-Theoretic (Logical Inference)
theorem proving software

We focus on logical inference using Isabelle/HOL

Isabelle/HOL Basics

System Architecture

Standard ML implementation language

System Architecture

Isabelle/Pure generic proof assistant
Standard ML implementation language

Isabelle/HOL Higher-Order Logic
Isabelle/Pure generic proof assistant
Standard ML implementation language

System Architecture

Proof General Emacs interface

> Isabelle/HOL Higher-Order Logic

Isabelle/Pure generic proof assistant
Standard ML implementation language

System Architecture

Isabelle/jEdit jEdit based interface

Isabelle/Scala connects ML to JVM
Proof General Emacs interface
Isabelle/HOL Higher-Order Logic
Isabelle/Pure generic proof assistant

Standard ML implementation language

System Architecture

Standard ML implementation language

Higher-Order Logic

- $\mathrm{HOL}=$ Functional Programming + Logic
- datatypes (datatype)
- recursive functions (fun)
- logical operators $(\wedge, \vee, \longrightarrow, \forall, \exists, \ldots)$

Setup of the Isabelle System

- custom settings in
file ~/.isabelle/Isabelle2011/etc/settings
- you will need at least:

ISABELLE_DOC_FORMAT=pdf PDF_VIEWER=〈program \rangle

Setup of the Isabelle System

－custom settings in
file～／．isabelle／Isabelle2011／etc／settings
－you will need at least：
ISABELLE＿DOC＿FORMAT＝pdf PDF＿VIEWER＝〈program \rangle

Main Component

－isabelle doc：for documentation
－isabelle emacs：interactive proof development in
ProofGeneral（i．e．，\＄isabelle emacs 〈File〉．thy）
－isabelle jedit：interactive proof development in jEdit（i．e．， \＄isabelle jedit 〈File〉．thy）

Proof General - Useful Shortcuts

Ctrl + C, Ctrl + Backspace	undo and delete last step
Ctrl + C, Ctrl + B	go to bottom
Ctrl + C, Ctrl + C	interrupt process
Ctrl + C, Ctrl + F	find (lemmas, theorems, definitions, ...)
Ctrl + C, Ctrl + N	next step
Ctrl + C, Ctrl + Return	go to cursor position
Ctrl + C, Ctrl + U	undo last step
Ctrl + C, Ctrl + V	evaluate Isabelle command
Ctrl + C, Ctrl + W	clear output window
Ctrl + G	abort current emacs-command

Theory Files (*.thy) - General Structure

theory Name imports $T_{1} \ldots T_{n}$ begin
end

Theory Files (*.thy) - General Structure

theory Name imports $T_{1} \ldots T_{n}$ begin
end

Explanation

- content of file Name.thy
- creates a new theory called Name
- depending on theories T_{1} to T_{n}
- all proofs and definitions go between begin and end

Theory Files (*.thy) - General Structure

theory Name imports $T_{1} \ldots T_{n}$ begin end

Explanation

- content of file Name.thy
- creates a new theory called Name
- depending on theories T_{1} to T_{n}
- all proofs and definitions go between begin and end

Example - Empty .thy

theory Empty imports Main begin end

Types

$$
\tau \begin{array}{lll}
\tau & \stackrel{\text { def }}{=} \text { bool } \mid \text { nat } \mid \ldots & \text { base types } \\
& { }^{\prime} \mathrm{a}|\mathrm{l}| \mathrm{b} \mid \ldots & \text { type variables } \\
\tau=>\tau & \text { total functions } \\
\tau * \tau & \text { pairs } \\
\tau \text { list } & \text { lists } \\
\ldots & \text { user-defined types }
\end{array}
$$

Types

$$
\begin{aligned}
& \tau \stackrel{\text { def }}{=} \text { bool | nat } \mid \ldots \text { base types } \\
& \text { 'a|'b|... type variables } \\
& \tau=>\tau \quad \text { total functions } \\
& \tau * \tau \quad \text { pairs } \\
& \tau \text { list lists } \\
& \text { user-defined types }
\end{aligned}
$$

Remark (Function Type is Right-Associative)

$$
\tau_{1}=>\tau_{2} \Rightarrow \tau_{3} \equiv \tau_{1} \Rightarrow>\left(\tau_{2}=>\tau_{3}\right)
$$

Examples - Types

Examples - Types

nat

Examples - Types

```
nat
nat => bool
```

a natural number, e.g., 0
a predicate on nats, e.g., even

Examples - Types

```
nat
nat => bool
nat => nat => nat
```

a natural number, e.g., 0
a predicate on nats, e.g., even
a binary function on nats, e.g., +

Examples - Types

```
nat
nat => bool
nat => nat => nat
    'a*''b =>' a
```

a natural number, e.g., 0
a predicate on nats, e.g., even
a binary function on nats, e.g., +
a polymorphic function on pairs,
e.g., fst

Examples - Types

$$
\begin{aligned}
& \text { nat } \\
& \text { nat => bool } \\
& \text { nat => nat => nat } \\
& \text { 'a * 'b => 'a } \\
& \left('^{\prime} \mathrm{a}=>^{\prime} \mathrm{b}\right)=>^{\prime} \mathrm{a} \text { list }=>^{\prime} \mathrm{b} \text { list }
\end{aligned}
$$

a natural number, e.g., 0
a predicate on nats, e.g., even
a binary function on nats, e.g., +
a polymorphic function on pairs, e.g., fst
a higher-order function on lists, e.g., map

Terms

$t \stackrel{\text { def }}{=} \mathrm{x}$
$t t$
$\% x$. t
if t then t else t
let $x=t$ in t
case t of $p=>t|\ldots| p=>t$
| ...
constant or variable (identifier) function application lambda abstraction
if-clauses
let-bindings
case - expressions
lots of syntactic sugar
where p is a pattern

Terms

$t \stackrel{\text { def }}{=} \mathrm{x} \quad$ constant or variable (identifier)
where p is a pattern

Remark

often necessary to put parentheses around lambda abstractions, if-clauses, let-bindings, and case-expressions; in order to get priorities right

Terms - Examples

function f applied to value x

Terms - Examples

f x
(\%x. $x+1$)
function f applied to value x the anonymous successor function

Terms - Examples

f x
(\%x. $x+1$)
let $s=(\% x . x+1)$ in $s 0$
function f applied to value x the anonymous successor function application of successor to 0

Terms - Examples

f x
(\%x. $x+1$)
let $s=(\% x . x+1)$ in s
(\% p. case p of (x, y) => x)
function f applied to value x the anonymous successor function application of successor to 0 possible implementation of f st

Formulas (Terms of Type bool)

$$
\begin{array}{rll}
\varphi & \stackrel{\text { def }}{=} & \text { True } \mid \text { False } \\
& \sim \varphi & \text { Boolean constants } \\
& \varphi=\varphi & \text { negation } \\
& \varphi \& \varphi|\varphi| \varphi \mid \varphi-->\varphi & \text { equality } \\
& \text { bLL } x \cdot \varphi \mid \operatorname{EX} x \cdot \varphi & \text { quantifiers }
\end{array}
$$

Formulas (Terms of Type bool)

$$
\begin{array}{rll}
\varphi \stackrel{\text { def }}{=} & \text { True } \mid \text { False } & \text { Boolean constan } \\
& \sim \varphi & \text { negation } \\
\varphi=\varphi & \text { equality } \\
\varphi \& \varphi|\varphi| \varphi \mid \varphi-->\varphi & \text { binary operators } \\
& \operatorname{ALL} x \cdot \varphi \mid \operatorname{EX} x . \varphi & \text { quantifiers }
\end{array}
$$

Operator Precedence

$$
=\quad \succ \sim \sim \quad \succ \quad \& \quad \succ \quad \mid \quad \succ \quad->\quad \succ \text { ALL, EX }
$$

Formulas - Examples
\sim A \mid A
law of excluded middle

Formulas - Examples

~A | A
False --> P
law of excluded middle anything follows from False

Formulas - Examples

~A | A
False --> P
$\mathrm{a}=\mathrm{b} \& \mathrm{~b}=\mathrm{c}-->\mathrm{a}=\mathrm{c}$
law of excluded middle anything follows from False transitivity of equality

Formulas - Examples

\sim A | A
False --> P
$\mathrm{a}=\mathrm{b} \& \mathrm{~b}=\mathrm{c}-->\mathrm{a}=\mathrm{c}$
(ALL x. P x) $=(\sim(E X x . \quad \sim(P x)))$
law of excluded middle anything follows from False transitivity of equality variant of De Morgan's Law

Remark - Type Constraints

- $(t:: \tau)$ states that term t is of type τ
- in presence of overloaded constants and functions (like 0 and +), sometimes necessary to add constraints

Remark - Type Constraints

- $(t:: \tau)$ states that term t is of type τ
- in presence of overloaded constants and functions (like 0 and +), sometimes necessary to add constraints

Examples

Remark - Type Constraints

- $(t:: \tau)$ states that term t is of type τ
- in presence of overloaded constants and functions (like 0 and +), sometimes necessary to add constraints

Examples

- (x::nat) + y, since + has type 'a => 'a => 'a

Remark - Type Constraints

- $(t:: \tau)$ states that term t is of type τ
- in presence of overloaded constants and functions (like 0 and +), sometimes necessary to add constraints

Examples

- (x::nat) + y, since + has type 'a => 'a => 'a
- (0 : :nat) $+y$, since 0 has type 'a

Remark - Type Constraints

- $(t:: \tau)$ states that term t is of type τ
- in presence of overloaded constants and functions (like 0 and +), sometimes necessary to add constraints

Examples

- (x::nat) + y, since + has type 'a => 'a => 'a
- (0: nat) + y, since 0 has type 'a
- Suc 0, no constraint necessary since Suc has type nat => nat

Remark - 3 Kinds of Variables

- free variables (blue in jEdit/ProofGeneral)
- bound variables (green in jEdit/ProofGeneral)
- schematic variables (dark blue in jEdit/ProofGeneral; have leading ?); can be replaced by arbitrary values

Remark - 3 Kinds of Variables

- free variables (blue in jEdit/ProofGeneral)
- bound variables (green in jEdit/ProofGeneral)
- schematic variables (dark blue in jEdit/ProofGeneral; have leading ?); can be replaced by arbitrary values

Examples

Remark - 3 Kinds of Variables

- free variables (blue in jEdit/ProofGeneral)
- bound variables (green in jEdit/ProofGeneral)
- schematic variables (dark blue in jEdit/ProofGeneral; have leading ?); can be replaced by arbitrary values

Examples

- in ' $x+y$ ', x and y are free

Remark - 3 Kinds of Variables

- free variables (blue in jEdit/ProofGeneral)
- bound variables (green in jEdit/ProofGeneral)
- schematic variables (dark blue in jEdit/ProofGeneral; have leading ?); can be replaced by arbitrary values

Examples

- in ' $x+y$ ', x and y are free
- in 'ALL $x . P x^{\prime}, x$ is bound and P is free

Remark - 3 Kinds of Variables

- free variables (blue in jEdit/ProofGeneral)
- bound variables (green in jEdit/ProofGeneral)
- schematic variables (dark blue in jEdit/ProofGeneral; have leading ?); can be replaced by arbitrary values

Examples

- in ' $x+y$ ', x and y are free
- in 'ALL $x . P$ ',x is bound and P is free
- in ' $(\sim \sim ? P)=? P^{\prime}, P$ is schematic

Functional Programming in HOL

An Introductory Theory - Session1.thy
theory Session1 imports Datatype begin

An Introductory Theory - Session1.thy
theory Session1 imports Datatype begin

A Datatype for Lists
$\begin{aligned} \text { datatype 'a list } & =\text { "Nil" } \\ & \text { "Cons" "'a" "'a list" }\end{aligned}$

An Introductory Theory - Session1.thy

theory Session1 imports Datatype begin

A Datatype for Lists

datatype 'a list $=$ "Nil" \quad | "Cons" "'a" "'a list"

Remark - Inner and Outer Syntax

- terms and types are inner syntax
- inner syntax has to be put between double quotes (but: double quotes around single identifiers may be dropped)

An Introductory Theory - Session1.thy

theory Session1 imports Datatype begin

A Datatype for Lists

```
datatype 'a list = "Nil"
    "Cons" "'a" "'a list"
```

Remark - Inner and Outer Syntax

- terms and types are inner syntax
- inner syntax has to be put between double quotes (but: double quotes around single identifiers may be dropped)

Syntactic Sugar for Lists - notation

notation Nil ("[]")
notation Cons (infixr "\#" 65)

Syntactic Sugar for Lists - notation

```
notation Nil ("[]")
notation Cons (infixr "#" 65)
```

Syntactic Sugar for Lists - inlined
datatype 'a list = Nil ("[]")
| Cons 'a "'a list" (infixr "\#" 65)

Example Lists

Example Lists

Nil
corresponds to [] : : 'a list

Example Lists

Nil
Cons (0::nat) Nil corresponds to [0] :: nat list

Example Lists

Nil
Cons (0::nat) Nil corresponds to [0] :: nat list
Cons 0 (Cons 1 Nil) corresponds to [0,1] :: 'a list

Datatypes - The General Format

datatype $\left(\alpha_{1}, \ldots, \alpha_{n}\right) t=C_{1} \tau_{11} \ldots \tau_{1 k_{1}}|\ldots| C_{m} \tau_{m 1} \ldots \tau_{m k_{m}}$

- α_{i} parameters
- C_{j} constructor names

Datatypes - The General Format

datatype $\left(\alpha_{1}, \ldots, \alpha_{n}\right) t=C_{1} \tau_{11} \ldots \tau_{1 k_{1}}|\ldots| C_{m} \tau_{m 1} \ldots \tau_{m k_{m}}$

- α_{i} parameters
- C_{j} constructor names

Every Datatype has

- many lemmas proved automatically (e.g., ~ ([] = x\#xs) for lists)
- a size function size : : t => nat
- an induction scheme
- a case analysis scheme

Functions on Datatypes - Primitive Recursion

- primitive recursion over datatype t uses equations of the form

$$
f x_{1} \ldots\left(\begin{array}{lll}
\text { (} & y_{1} & \ldots \\
y_{k}
\end{array}\right) \ldots x_{n}=b
$$

- where C is constructor of t
- all calls to f in b have form $f \ldots y_{i} \ldots$ for some i

Functions on Datatypes - Primitive Recursion

- primitive recursion over datatype t uses equations of the form

$$
f x_{1} \ldots\left(\begin{array}{llll}
C & y_{1} & \ldots & y_{k}
\end{array}\right) \ldots x_{n}=b
$$

- where C is constructor of t
- all calls to f in b have form $f \ldots y_{i} \ldots$ for some i

Intuition

- every recursive call removes one constructor symbol
- hence f terminates

Example - Concatenating two Lists

```
primrec
    append :: "'a list => 'a list => 'a list"
    (infixr "@" 65)
where
    "[] @ ys = ys"
| "(x # xs) @ ys = x # (xs @ ys)"
```


Example - Reversing a List

```
primrec rev :: "'a list => 'a list" where
    "rev [] = []"
    "rev (x # xs) = rev xs @ (x # [])"
```

An Introductory Proof

An Introductory Proof

Proof

Whiteboard

Some Diagnostic Commands

General Structure of a Proof

$$
\begin{aligned}
& \text { proof } \stackrel{\text { def }}{=} \text { proof method? statement* qed method? } \\
& \text { by method method? } \\
& \text { statement } \stackrel{\text { def }}{=} \text { fix variables } \\
& \\
& \text { assume proposition } \\
&\left.\left(\text { from fact }{ }^{+}\right)^{?} \text { (show } \mid \text { have }\right) \text { proposition proof } \\
& \text { proposition } \stackrel{\text { def }}{=}(\text { label : })^{?} \text { "term" } \\
& \text { fact } \stackrel{\text { def }}{=} \text { label } \\
& \text { 'term }
\end{aligned}
$$

An Introductory Proof (cont'd)

lemma append_Nil2[simp]: "xs © [] = xs" by (induct xs) simp_all
lemma append_assoc[simp]:
" (xs @ ys) @ zs = xs @ (ys @ zs)" by (induct xs) simp_all
lemma rev_append[simp]:
"rev (xs @ ys) = rev ys @ rev xs"
by (induct xs) simp_all
theorem rev_rev_ident[simp]: "rev (rev xs) = xs" by (induct xs) simp_all

Basic Types - Natural Numbers

datatype nat $=0$
| Suc nat

Basic Types - Natural Numbers

datatype nat $=0$
 | Suc nat

Predefined Operations

- addition, subtraction (+, -)
- multiplication, division (*, div)
- modulo (mod)
- minimum, maximum (min, max)
- less than (or equal) $(<,<=)$

Basic Types - Pairs

- Pair : : ' $\mathrm{a}=>'^{\prime} \mathrm{b}=>'^{\prime} \mathrm{a} *{ }^{\prime} \mathrm{b}$
- fist : : 'a * 'b => 'a
- snd :: 'a * 'b $=>{ }^{\prime} \mathrm{b}$
- curry $::\left({ }^{\prime} \mathrm{a} *{ }^{\prime} \mathrm{b} \Rightarrow{ }^{\prime} \mathrm{c}\right) \Rightarrow{ }^{\prime} \mathrm{a} \Rightarrow>^{\prime} \mathrm{b} \Rightarrow{ }^{\prime} \mathrm{c}$

Basic Types - Option

datatype 'a option = None | Some 'a

Basic Types - Option

datatype 'a option = None | Some 'a

Predefined Operations

- the :: 'a option => 'a
- Option.set : : 'a option => 'a set

Definitions - Type Synonyms

introducing new names for existing types

Definitions - Type Synonyms

introducing new names for existing types

Examples

type_synonym number	$=$ nat
type_synonym gate	$=$ "bool => bool => bool"
type_synonym 'a plist	$=$ " ('a * 'a) list"

Definitions - Constant Definitions

introducing new names for existing expressions

Definitions - Constant Definitions

introducing new names for existing expressions

Examples

```
definition nand :: gate
where "nand A B == ~ (A & B)"
definition xor :: gate
where "xor A B == (A & ~B) | (~A & B)"
```


Definitions - Constant Definitions

introducing new names for existing expressions

Examples

```
definition nand :: gate
where "nand A B == ~ (A & B)"
definition xor :: gate
where "xor A B == (A & ~B) | (~A & B)"
```


Provided Lemmas

definition of constant <const〉 automatically provides lemma \langle const \rangle _def, stating equality between constant and its definition

The Definitional Approach

- only total functions are allowed ...
- or else

```
axiomatization f :: "nat => nat" where
    f_def: "f x = f x + 1"
lemma everything: "P"
proof -
    fix x
    have "f x = f x + 1" by (rule f_def)
    from this show "P" by simp
qed
```

lemma wrong: "0 = 1" by (rule everything)

Exercises

1. define a primitive recursive function length that computes the length of a list
2. prove "length (xs @ ys) = length xs + length ys"
3. define a primitive recursive function snoc that appends an element at the end of a list (do not use ©)
4. prove "snoc (rev xs) $x=r e v(x \#$ xs)"
5. define a primitive recursive function replace such that replace x y zs replaces all occurrences of x in the list $z s$ by y
6. prove
"replace x y (rev zs) = rev (replace x y zs)"
