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Today’s Topics

� Organization

� Formal Verification

� Isabelle/HOL Basics

� Functional Programming in HOL



Organization



Lecture

� LV-Nr. 703523

� VO 1

� http://cl-informatik.uibk.ac.at/teaching/ss11/eve/

� slides are also available online

� office hours: Tuesday 12:00 – 14:00 in 3N01

� online registration required before 23:59 on March 31

� grading: semester project
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Schedule

The lecture is blocked to 4 sessions of 3 hours each. The sessions

take place on:

session 1 March 11
session 2 March 25
session 3 April 1
session 4 April 15



The Project

� after last session (on April 15) projects will be distributed

� work alone or in small groups

� projects have to be finished before August 1

� on delivery you will have to answer questions about your
project



Formal Verification



What is Verification?

� part of software testing process

� part of V&V (verification and validation)
verification: built right (software meets specifications)
validation: built right thing (software fulfills intended purpose)

Formal Verification

Proving or disproving the correctness of intended
algorithms with respect to a certain formal specification.
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Model-Theoretic (Model Checking)

systematically exhaustive exploration of the mathematical model

Proof-Theoretic (Logical Inference)

theorem proving software

We focus on logical inference using Isabelle/HOL
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Example – Verification

given set of formulas Φ = {¬A,B −→ A,B}; check whether it is
valid

Truth Table (Model-Theoretic)

A B ¬A B −→ A Φ

0 0 1 1 0
0 1 1 0 0
1 0 0 1 0
1 1 0 1 0
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Isabelle/HOL Basics



System Architecture

Standard ML implementation language

Isabelle/Pure generic proof assistant

Isabelle/HOL Higher-Order Logic

Emacs interfaceProof General

Isabelle/Scala connects ML to JVM

Isabelle/jEdit jEdit based interface
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Higher-Order Logic

� HOL = Functional Programming + Logic

� datatypes (datatype)

� recursive functions (fun)

� logical operators (∧, ∨, −→, ∀, ∃, . . . )



Setup of the Isabelle System

� custom settings in
file ~/.isabelle/Isabelle2011/etc/settings

� you will need at least:
ISABELLE DOC FORMAT=pdf
PDF VIEWER=〈program〉

Main Component

� isabelle doc: for documentation

� isabelle emacs: interactive proof development in
ProofGeneral (i.e., $ isabelle emacs 〈File〉.thy)

� isabelle jedit: interactive proof development in jEdit (i.e.,
$ isabelle jedit 〈File〉.thy)
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Proof General – Useful Shortcuts

Ctrl + C, Ctrl + Backspace undo and delete last step
Ctrl + C, Ctrl + B go to bottom
Ctrl + C, Ctrl + C interrupt process
Ctrl + C, Ctrl + F find (lemmas, theorems, definitions, . . . )
Ctrl + C, Ctrl + N next step
Ctrl + C, Ctrl + Return go to cursor position
Ctrl + C, Ctrl + U undo last step
Ctrl + C, Ctrl + V evaluate Isabelle command
Ctrl + C, Ctrl + W clear output window
Ctrl + G abort current emacs-command



Theory Files (*.thy) – General Structure

theory Name imports T1 . . . Tn begin

. . .
end

Explanation

� content of file Name.thy

� creates a new theory called Name

� depending on theories T1 to Tn

� all proofs and definitions go between begin and end

Example – Empty.thy

theory Empty imports Main begin end
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Types

τ
def
= bool | nat | . . . base types
| 'a | 'b | . . . type variables
| τ => τ total functions
| τ * τ pairs
| τ list lists
| . . . user-defined types

Remark (Function Type is Right-Associative)

τ1 => τ2 => τ3 ≡ τ1 => (τ2 => τ3)
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Examples – Types

nat a natural number, e.g., 0
nat => bool a predicate on nats, e.g., even
nat => nat => nat a binary function on nats, e.g., +
'a * 'b => 'a a polymorphic function on pairs,

e.g., fst
('a => 'b) => 'a list => 'b list a higher-order function on lists,

e.g., map
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Terms

t
def
= x constant or variable (identifier)
| t t function application
| %x. t lambda abstraction
| if t then t else t if-clauses
| let x = t in t let-bindings
| case t of p => t | . . . | p => t case − expressions
| . . . lots of syntactic sugar

where p is a pattern

Remark

often necessary to put parentheses around lambda abstractions,
if-clauses, let-bindings, and case-expressions; in order to get
priorities right
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Terms – Examples

f x function f applied to value x

(%x. x + 1) the anonymous successor function
let s = (%x. x + 1) in s 0 application of successor to 0
(%p. case p of (x, y) => x) possible implementation of fst
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Formulas (Terms of Type bool)

ϕ
def
= True | False Boolean constants
| ~ϕ negation
| ϕ = ϕ equality
| ϕ & ϕ | ϕ | ϕ | ϕ --> ϕ binary operators
| ALL x . ϕ | EX x . ϕ quantifiers

Operator Precedence

= � ~ � & � | � --> � ALL , EX
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Formulas – Examples

~A | A law of excluded middle

False --> P anything follows from False
a = b & b = c --> a = c transitivity of equality
(ALL x. P x) = (~(EX x. ~(P x))) variant of De Morgan’s Law
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Remark – Type Constraints

� (t :: τ) states that term t is of type τ

� in presence of overloaded constants and functions (like 0 and
+), sometimes necessary to add constraints

Examples

� (x::nat) + y, since + has type 'a => 'a => 'a

� (0::nat) + y, since 0 has type 'a

� Suc 0, no constraint necessary since Suc has type
nat => nat
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Remark – 3 Kinds of Variables

� free variables (blue in jEdit/ProofGeneral)

� bound variables (green in jEdit/ProofGeneral)

� schematic variables (dark blue in jEdit/ProofGeneral; have
leading ?); can be replaced by arbitrary values

Examples

� in ‘x + y ’, x and y are free

� in ‘ALL x . P x ’, x is bound and P is free

� in ‘(~~?P) = ?P’, P is schematic
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Functional Programming in HOL



An Introductory Theory – Session1.thy

theory Session1 imports Datatype begin

A Datatype for Lists

datatype 'a list = "Nil"
| "Cons" "'a" "'a list"

Remark – Inner and Outer Syntax

� terms and types are inner syntax

� inner syntax has to be put between double quotes (but:
double quotes around single identifiers may be dropped)
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Syntactic Sugar for Lists – notation

notation Nil ("[]")
notation Cons (infixr "#" 65)

Syntactic Sugar for Lists – inlined

datatype 'a list = Nil ("[]")
| Cons 'a "'a list" (infixr "#" 65)
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Example Lists

Nil corresponds to [] :: 'a list
Cons (0::nat) Nil corresponds to [0] :: nat list
Cons 0 (Cons 1 Nil) corresponds to [0,1] :: 'a list
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Datatypes – The General Format

datatype (α1, . . . , αn)t = C1 τ11 . . . τ1k1 | . . . | Cm τm1 . . . τmkm

� αi parameters

� Cj constructor names

Every Datatype has . . .

� many lemmas proved automatically (e.g., ~([] = x#xs) for
lists)

� a size function size :: t => nat

� an induction scheme

� a case analysis scheme
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Functions on Datatypes – Primitive Recursion

� primitive recursion over datatype t uses equations of the form

f x1 . . . (C y1 . . . yk) . . . xn = b

� where C is constructor of t

� all calls to f in b have form f . . . yi . . . for some i

Intuition

� every recursive call removes one constructor symbol

� hence f terminates
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Example – Concatenating two Lists

primrec

append :: "'a list => 'a list => 'a list"
(infixr "@" 65)

where

"[] @ ys = ys"
| "(x # xs) @ ys = x # (xs @ ys)"



Example – Reversing a List

primrec rev :: "'a list => 'a list" where

"rev [] = []"
| "rev (x # xs) = rev xs @ (x # [])"



An Introductory Proof

"rev (rev xs) = xs"

Proof

Whiteboard
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Some Diagnostic Commands

find_theorems 〈args〉 print all theorems matching 〈args〉
print_cases print currently available cases
prop 〈formula〉 print proposition 〈formula〉
term 〈term〉 print term 〈term〉 and its type
thm 〈name〉 print theorem called 〈name〉
typ 〈type〉 print type 〈type〉
value 〈term〉 evaluate and print 〈term〉



General Structure of a Proof

proof
def
= proof method? statement∗ qed method?

| by method method?

statement
def
= fix variables
| assume proposition+

| (from fact+)? (show | have) proposition proof

proposition
def
= (label:)? "term"

fact
def
= label
| `term`



An Introductory Proof (cont’d)

lemma append_Nil2[simp]: "xs @ [] = xs"
by (induct xs) simp_all

lemma append_assoc[simp]:
"(xs @ ys) @ zs = xs @ (ys @ zs)"
by (induct xs) simp_all

lemma rev_append[simp]:
"rev (xs @ ys) = rev ys @ rev xs"
by (induct xs) simp_all

theorem rev_rev_ident[simp]: "rev (rev xs) = xs"
by (induct xs) simp_all



Basic Types – Natural Numbers

datatype nat = 0
| Suc nat

Predefined Operations

� addition, subtraction (+, -)

� multiplication, division (*, div)

� modulo (mod)

� minimum, maximum (min, max)

� less than (or equal) (<, <=)
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Basic Types – Pairs

� Pair :: 'a => 'b => 'a * 'b

� fst :: 'a * 'b => 'a

� snd :: 'a * 'b => 'b

� curry :: ('a * 'b => 'c) => 'a => 'b => 'c

� split :: ('a => 'b => 'c) => 'a * 'b => 'c



Basic Types – Option

datatype 'a option = None
| Some 'a

Predefined Operations

� the :: 'a option => 'a

� Option.set :: 'a option => 'a set
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Definitions – Type Synonyms

introducing new names for existing types

Examples

type_synonym number = nat
type_synonym gate = "bool => bool => bool"
type_synonym 'a plist = "('a * 'a) list"
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Definitions – Constant Definitions

introducing new names for existing expressions

Examples

definition nand :: gate
where "nand A B == ~(A & B)"

definition xor :: gate
where "xor A B == (A & ~B) | (~A & B)"

Provided Lemmas

definition of constant 〈const〉 automatically provides lemma
〈const〉_def, stating equality between constant and its definition
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The Definitional Approach

� only total functions are allowed . . .

� or else

axiomatization f :: "nat => nat" where

f_def: "f x = f x + 1"

lemma everything: "P"
proof -
fix x
have "f x = f x + 1" by (rule f_def)
from this show "P" by simp
qed

lemma wrong: "0 = 1" by (rule everything)



Exercises

1. define a primitive recursive function length that computes
the length of a list

2. prove "length (xs @ ys) = length xs + length ys"

3. define a primitive recursive function snoc that appends an
element at the end of a list (do not use @)

4. prove "snoc (rev xs) x = rev (x # xs)"

5. define a primitive recursive function replace such that
replace x y zs replaces all occurrences of x in the list zs
by y

6. prove
"replace x y (rev zs) = rev (replace x y zs)"


