
Experiments in Verification
SS 2011

Christian Sternagel

Computational Logic
Institute of Computer Science

University of Innsbruck

March 11, 2011

http://cl-informatik.uibk.ac.at

Today’s Topics

� Organization

� Formal Verification

� Isabelle/HOL Basics

� Functional Programming in HOL

Organization

Lecture

� LV-Nr. 703523

� VO 1

� http://cl-informatik.uibk.ac.at/teaching/ss11/eve/

� slides are also available online

� office hours: Tuesday 12:00 – 14:00 in 3N01

� online registration required before 23:59 on March 31

� grading: semester project

http://orawww.uibk.ac.at/public_prod/owa/lfuonline_lv.details?sem_id_in=11S&lvnr_id_in=703523
http://cl-informatik.uibk.ac.at/teaching/ss11/eve/
http://cl-informatik.uibk.ac.at/teaching/ss11/eve/overview.php
http://cl-informatik.uibk.ac.at/teaching/ss11/eve/overview.php

Lecture

� LV-Nr. 703523

� VO 1

� http://cl-informatik.uibk.ac.at/teaching/ss11/eve/

� slides are also available online

� office hours: Tuesday 12:00 – 14:00 in 3N01

� online registration required before 23:59 on March 31

� grading: semester project

http://orawww.uibk.ac.at/public_prod/owa/lfuonline_lv.details?sem_id_in=11S&lvnr_id_in=703523
http://cl-informatik.uibk.ac.at/teaching/ss11/eve/
http://cl-informatik.uibk.ac.at/teaching/ss11/eve/overview.php
http://cl-informatik.uibk.ac.at/teaching/ss11/eve/overview.php

Schedule

The lecture is blocked to 4 sessions of 3 hours each. The sessions

take place on:

session 1 March 11
session 2 March 25
session 3 April 1
session 4 April 15

The Project

� after last session (on April 15) projects will be distributed

� work alone or in small groups

� projects have to be finished before August 1

� on delivery you will have to answer questions about your
project

Formal Verification

What is Verification?

� part of software testing process

� part of V&V (verification and validation)
verification: built right (software meets specifications)
validation: built right thing (software fulfills intended purpose)

Formal Verification

Proving or disproving the correctness of intended
algorithms with respect to a certain formal specification.

What is Verification?

� part of software testing process

� part of V&V (verification and validation)
verification: built right (software meets specifications)
validation: built right thing (software fulfills intended purpose)

Formal Verification

Proving or disproving the correctness of intended
algorithms with respect to a certain formal specification.

Model-Theoretic (Model Checking)

systematically exhaustive exploration of the mathematical model

Proof-Theoretic (Logical Inference)

theorem proving software

We focus on logical inference using Isabelle/HOL

Model-Theoretic (Model Checking)

systematically exhaustive exploration of the mathematical model

Proof-Theoretic (Logical Inference)

theorem proving software

We focus on logical inference using Isabelle/HOL

Example – Verification

given set of formulas Φ = {¬A,B −→ A,B}; check whether it is
valid

Truth Table (Model-Theoretic)

A B ¬A B −→ A Φ

0 0 1 1 0
0 1 1 0 0
1 0 0 1 0
1 1 0 1 0

Example – Verification

given set of formulas Φ = {¬A,B −→ A,B}; check whether it is
valid

Truth Table (Model-Theoretic)

A B ¬A B −→ A Φ

0 0 1 1 0
0 1 1 0 0
1 0 0 1 0
1 1 0 1 0

Example – Verification

given set of formulas Φ = {¬A,B −→ A,B}; check whether it is
valid

Natural Deduction Proof (Proof-Theoretic)

1 ¬A premise
2 B −→ A premise
3 B premise
4 ¬B MT 2, 1
5 ⊥ ¬e 3, 4

Example – Verification

given set of formulas Φ = {¬A,B −→ A,B}; check whether it is
valid

Natural Deduction Proof (Proof-Theoretic)

1 ¬A premise
2 B −→ A premise
3 B premise
4 ¬B MT 2, 1
5 ⊥ ¬e 3, 4

Model-Theoretic (Model Checking)

systematically exhaustive exploration of the mathematical model

Proof-Theoretic (Logical Inference)

theorem proving software

We focus on logical inference using Isabelle/HOL

Isabelle/HOL Basics

System Architecture

Standard ML implementation language

Isabelle/Pure generic proof assistant

Isabelle/HOL Higher-Order Logic

Emacs interfaceProof General

Isabelle/Scala connects ML to JVM

Isabelle/jEdit jEdit based interface

System Architecture

Standard ML implementation language

Isabelle/Pure generic proof assistant

Isabelle/HOL Higher-Order Logic

Emacs interfaceProof General

Isabelle/Scala connects ML to JVM

Isabelle/jEdit jEdit based interface

System Architecture

Standard ML implementation language

Isabelle/Pure generic proof assistant

Isabelle/HOL Higher-Order Logic

Emacs interfaceProof General

Isabelle/Scala connects ML to JVM

Isabelle/jEdit jEdit based interface

System Architecture

Standard ML implementation language

Isabelle/Pure generic proof assistant

Isabelle/HOL Higher-Order Logic

Emacs interfaceProof General

Isabelle/Scala connects ML to JVM

Isabelle/jEdit jEdit based interface

System Architecture

Standard ML implementation language

Isabelle/Pure generic proof assistant

Isabelle/HOL Higher-Order Logic

Emacs interfaceProof General

Isabelle/Scala connects ML to JVM

Isabelle/jEdit jEdit based interface

System Architecture

Standard ML implementation language

Isabelle/Pure generic proof assistant

Isabelle/HOL Higher-Order Logic

Emacs interfaceProof General

Isabelle/Scala connects ML to JVM

Isabelle/jEdit jEdit based interface

Higher-Order Logic

� HOL = Functional Programming + Logic

� datatypes (datatype)

� recursive functions (fun)

� logical operators (∧, ∨, −→, ∀, ∃, . . .)

Setup of the Isabelle System

� custom settings in
file ~/.isabelle/Isabelle2011/etc/settings

� you will need at least:
ISABELLE DOC FORMAT=pdf
PDF VIEWER=〈program〉

Main Component

� isabelle doc: for documentation

� isabelle emacs: interactive proof development in
ProofGeneral (i.e., $ isabelle emacs 〈File〉.thy)

� isabelle jedit: interactive proof development in jEdit (i.e.,
$ isabelle jedit 〈File〉.thy)

Setup of the Isabelle System

� custom settings in
file ~/.isabelle/Isabelle2011/etc/settings

� you will need at least:
ISABELLE DOC FORMAT=pdf
PDF VIEWER=〈program〉

Main Component

� isabelle doc: for documentation

� isabelle emacs: interactive proof development in
ProofGeneral (i.e., $ isabelle emacs 〈File〉.thy)

� isabelle jedit: interactive proof development in jEdit (i.e.,
$ isabelle jedit 〈File〉.thy)

Proof General – Useful Shortcuts

Ctrl + C, Ctrl + Backspace undo and delete last step
Ctrl + C, Ctrl + B go to bottom
Ctrl + C, Ctrl + C interrupt process
Ctrl + C, Ctrl + F find (lemmas, theorems, definitions, . . .)
Ctrl + C, Ctrl + N next step
Ctrl + C, Ctrl + Return go to cursor position
Ctrl + C, Ctrl + U undo last step
Ctrl + C, Ctrl + V evaluate Isabelle command
Ctrl + C, Ctrl + W clear output window
Ctrl + G abort current emacs-command

Theory Files (*.thy) – General Structure

theory Name imports T1 . . . Tn begin

. . .
end

Explanation

� content of file Name.thy

� creates a new theory called Name

� depending on theories T1 to Tn

� all proofs and definitions go between begin and end

Example – Empty.thy

theory Empty imports Main begin end

Theory Files (*.thy) – General Structure

theory Name imports T1 . . . Tn begin

. . .
end

Explanation

� content of file Name.thy

� creates a new theory called Name

� depending on theories T1 to Tn

� all proofs and definitions go between begin and end

Example – Empty.thy

theory Empty imports Main begin end

Theory Files (*.thy) – General Structure

theory Name imports T1 . . . Tn begin

. . .
end

Explanation

� content of file Name.thy

� creates a new theory called Name

� depending on theories T1 to Tn

� all proofs and definitions go between begin and end

Example – Empty.thy

theory Empty imports Main begin end

Types

τ
def
= bool | nat | . . . base types
| 'a | 'b | . . . type variables
| τ => τ total functions
| τ * τ pairs
| τ list lists
| . . . user-defined types

Remark (Function Type is Right-Associative)

τ1 => τ2 => τ3 ≡ τ1 => (τ2 => τ3)

Types

τ
def
= bool | nat | . . . base types
| 'a | 'b | . . . type variables
| τ => τ total functions
| τ * τ pairs
| τ list lists
| . . . user-defined types

Remark (Function Type is Right-Associative)

τ1 => τ2 => τ3 ≡ τ1 => (τ2 => τ3)

Examples – Types

nat a natural number, e.g., 0
nat => bool a predicate on nats, e.g., even
nat => nat => nat a binary function on nats, e.g., +
'a * 'b => 'a a polymorphic function on pairs,

e.g., fst
('a => 'b) => 'a list => 'b list a higher-order function on lists,

e.g., map

Examples – Types

nat a natural number, e.g., 0

nat => bool a predicate on nats, e.g., even
nat => nat => nat a binary function on nats, e.g., +
'a * 'b => 'a a polymorphic function on pairs,

e.g., fst
('a => 'b) => 'a list => 'b list a higher-order function on lists,

e.g., map

Examples – Types

nat a natural number, e.g., 0
nat => bool a predicate on nats, e.g., even

nat => nat => nat a binary function on nats, e.g., +
'a * 'b => 'a a polymorphic function on pairs,

e.g., fst
('a => 'b) => 'a list => 'b list a higher-order function on lists,

e.g., map

Examples – Types

nat a natural number, e.g., 0
nat => bool a predicate on nats, e.g., even
nat => nat => nat a binary function on nats, e.g., +

'a * 'b => 'a a polymorphic function on pairs,
e.g., fst

('a => 'b) => 'a list => 'b list a higher-order function on lists,
e.g., map

Examples – Types

nat a natural number, e.g., 0
nat => bool a predicate on nats, e.g., even
nat => nat => nat a binary function on nats, e.g., +
'a * 'b => 'a a polymorphic function on pairs,

e.g., fst

('a => 'b) => 'a list => 'b list a higher-order function on lists,
e.g., map

Examples – Types

nat a natural number, e.g., 0
nat => bool a predicate on nats, e.g., even
nat => nat => nat a binary function on nats, e.g., +
'a * 'b => 'a a polymorphic function on pairs,

e.g., fst
('a => 'b) => 'a list => 'b list a higher-order function on lists,

e.g., map

Terms

t
def
= x constant or variable (identifier)
| t t function application
| %x. t lambda abstraction
| if t then t else t if-clauses
| let x = t in t let-bindings
| case t of p => t | . . . | p => t case − expressions
| . . . lots of syntactic sugar

where p is a pattern

Remark

often necessary to put parentheses around lambda abstractions,
if-clauses, let-bindings, and case-expressions; in order to get
priorities right

Terms

t
def
= x constant or variable (identifier)
| t t function application
| %x. t lambda abstraction
| if t then t else t if-clauses
| let x = t in t let-bindings
| case t of p => t | . . . | p => t case − expressions
| . . . lots of syntactic sugar

where p is a pattern

Remark

often necessary to put parentheses around lambda abstractions,
if-clauses, let-bindings, and case-expressions; in order to get
priorities right

Terms – Examples

f x function f applied to value x

(%x. x + 1) the anonymous successor function
let s = (%x. x + 1) in s 0 application of successor to 0
(%p. case p of (x, y) => x) possible implementation of fst

Terms – Examples

f x function f applied to value x
(%x. x + 1) the anonymous successor function

let s = (%x. x + 1) in s 0 application of successor to 0
(%p. case p of (x, y) => x) possible implementation of fst

Terms – Examples

f x function f applied to value x
(%x. x + 1) the anonymous successor function
let s = (%x. x + 1) in s 0 application of successor to 0

(%p. case p of (x, y) => x) possible implementation of fst

Terms – Examples

f x function f applied to value x
(%x. x + 1) the anonymous successor function
let s = (%x. x + 1) in s 0 application of successor to 0
(%p. case p of (x, y) => x) possible implementation of fst

Formulas (Terms of Type bool)

ϕ
def
= True | False Boolean constants
| ~ϕ negation
| ϕ = ϕ equality
| ϕ & ϕ | ϕ | ϕ | ϕ --> ϕ binary operators
| ALL x . ϕ | EX x . ϕ quantifiers

Operator Precedence

= � ~ � & � | � --> � ALL , EX

Formulas (Terms of Type bool)

ϕ
def
= True | False Boolean constants
| ~ϕ negation
| ϕ = ϕ equality
| ϕ & ϕ | ϕ | ϕ | ϕ --> ϕ binary operators
| ALL x . ϕ | EX x . ϕ quantifiers

Operator Precedence

= � ~ � & � | � --> � ALL , EX

Formulas – Examples

~A | A law of excluded middle

False --> P anything follows from False
a = b & b = c --> a = c transitivity of equality
(ALL x. P x) = (~(EX x. ~(P x))) variant of De Morgan’s Law

Formulas – Examples

~A | A law of excluded middle
False --> P anything follows from False

a = b & b = c --> a = c transitivity of equality
(ALL x. P x) = (~(EX x. ~(P x))) variant of De Morgan’s Law

Formulas – Examples

~A | A law of excluded middle
False --> P anything follows from False
a = b & b = c --> a = c transitivity of equality

(ALL x. P x) = (~(EX x. ~(P x))) variant of De Morgan’s Law

Formulas – Examples

~A | A law of excluded middle
False --> P anything follows from False
a = b & b = c --> a = c transitivity of equality
(ALL x. P x) = (~(EX x. ~(P x))) variant of De Morgan’s Law

Remark – Type Constraints

� (t :: τ) states that term t is of type τ

� in presence of overloaded constants and functions (like 0 and
+), sometimes necessary to add constraints

Examples

� (x::nat) + y, since + has type 'a => 'a => 'a

� (0::nat) + y, since 0 has type 'a

� Suc 0, no constraint necessary since Suc has type
nat => nat

Remark – Type Constraints

� (t :: τ) states that term t is of type τ

� in presence of overloaded constants and functions (like 0 and
+), sometimes necessary to add constraints

Examples

� (x::nat) + y, since + has type 'a => 'a => 'a

� (0::nat) + y, since 0 has type 'a

� Suc 0, no constraint necessary since Suc has type
nat => nat

Remark – Type Constraints

� (t :: τ) states that term t is of type τ

� in presence of overloaded constants and functions (like 0 and
+), sometimes necessary to add constraints

Examples

� (x::nat) + y, since + has type 'a => 'a => 'a

� (0::nat) + y, since 0 has type 'a

� Suc 0, no constraint necessary since Suc has type
nat => nat

Remark – Type Constraints

� (t :: τ) states that term t is of type τ

� in presence of overloaded constants and functions (like 0 and
+), sometimes necessary to add constraints

Examples

� (x::nat) + y, since + has type 'a => 'a => 'a

� (0::nat) + y, since 0 has type 'a

� Suc 0, no constraint necessary since Suc has type
nat => nat

Remark – Type Constraints

� (t :: τ) states that term t is of type τ

� in presence of overloaded constants and functions (like 0 and
+), sometimes necessary to add constraints

Examples

� (x::nat) + y, since + has type 'a => 'a => 'a

� (0::nat) + y, since 0 has type 'a

� Suc 0, no constraint necessary since Suc has type
nat => nat

Remark – 3 Kinds of Variables

� free variables (blue in jEdit/ProofGeneral)

� bound variables (green in jEdit/ProofGeneral)

� schematic variables (dark blue in jEdit/ProofGeneral; have
leading ?); can be replaced by arbitrary values

Examples

� in ‘x + y ’, x and y are free

� in ‘ALL x . P x ’, x is bound and P is free

� in ‘(~~?P) = ?P’, P is schematic

Remark – 3 Kinds of Variables

� free variables (blue in jEdit/ProofGeneral)

� bound variables (green in jEdit/ProofGeneral)

� schematic variables (dark blue in jEdit/ProofGeneral; have
leading ?); can be replaced by arbitrary values

Examples

� in ‘x + y ’, x and y are free

� in ‘ALL x . P x ’, x is bound and P is free

� in ‘(~~?P) = ?P’, P is schematic

Remark – 3 Kinds of Variables

� free variables (blue in jEdit/ProofGeneral)

� bound variables (green in jEdit/ProofGeneral)

� schematic variables (dark blue in jEdit/ProofGeneral; have
leading ?); can be replaced by arbitrary values

Examples

� in ‘x + y ’, x and y are free

� in ‘ALL x . P x ’, x is bound and P is free

� in ‘(~~?P) = ?P’, P is schematic

Remark – 3 Kinds of Variables

� free variables (blue in jEdit/ProofGeneral)

� bound variables (green in jEdit/ProofGeneral)

� schematic variables (dark blue in jEdit/ProofGeneral; have
leading ?); can be replaced by arbitrary values

Examples

� in ‘x + y ’, x and y are free

� in ‘ALL x . P x ’, x is bound and P is free

� in ‘(~~?P) = ?P’, P is schematic

Remark – 3 Kinds of Variables

� free variables (blue in jEdit/ProofGeneral)

� bound variables (green in jEdit/ProofGeneral)

� schematic variables (dark blue in jEdit/ProofGeneral; have
leading ?); can be replaced by arbitrary values

Examples

� in ‘x + y ’, x and y are free

� in ‘ALL x . P x ’, x is bound and P is free

� in ‘(~~?P) = ?P’, P is schematic

Functional Programming in HOL

An Introductory Theory – Session1.thy

theory Session1 imports Datatype begin

A Datatype for Lists

datatype 'a list = "Nil"
| "Cons" "'a" "'a list"

Remark – Inner and Outer Syntax

� terms and types are inner syntax

� inner syntax has to be put between double quotes (but:
double quotes around single identifiers may be dropped)

An Introductory Theory – Session1.thy

theory Session1 imports Datatype begin

A Datatype for Lists

datatype 'a list = "Nil"
| "Cons" "'a" "'a list"

Remark – Inner and Outer Syntax

� terms and types are inner syntax

� inner syntax has to be put between double quotes (but:
double quotes around single identifiers may be dropped)

An Introductory Theory – Session1.thy

theory Session1 imports Datatype begin

A Datatype for Lists

datatype 'a list = "Nil"
| "Cons" "'a" "'a list"

Remark – Inner and Outer Syntax

� terms and types are inner syntax

� inner syntax has to be put between double quotes (but:
double quotes around single identifiers may be dropped)

An Introductory Theory – Session1.thy

theory Session1 imports Datatype begin

A Datatype for Lists

datatype 'a list = "Nil"
| "Cons" "'a" "'a list"

Remark – Inner and Outer Syntax

� terms and types are inner syntax

� inner syntax has to be put between double quotes (but:
double quotes around single identifiers may be dropped)

Syntactic Sugar for Lists – notation

notation Nil ("[]")
notation Cons (infixr "#" 65)

Syntactic Sugar for Lists – inlined

datatype 'a list = Nil ("[]")
| Cons 'a "'a list" (infixr "#" 65)

Syntactic Sugar for Lists – notation

notation Nil ("[]")
notation Cons (infixr "#" 65)

Syntactic Sugar for Lists – inlined

datatype 'a list = Nil ("[]")
| Cons 'a "'a list" (infixr "#" 65)

Example Lists

Nil corresponds to [] :: 'a list
Cons (0::nat) Nil corresponds to [0] :: nat list
Cons 0 (Cons 1 Nil) corresponds to [0,1] :: 'a list

Example Lists

Nil corresponds to [] :: 'a list

Cons (0::nat) Nil corresponds to [0] :: nat list
Cons 0 (Cons 1 Nil) corresponds to [0,1] :: 'a list

Example Lists

Nil corresponds to [] :: 'a list
Cons (0::nat) Nil corresponds to [0] :: nat list

Cons 0 (Cons 1 Nil) corresponds to [0,1] :: 'a list

Example Lists

Nil corresponds to [] :: 'a list
Cons (0::nat) Nil corresponds to [0] :: nat list
Cons 0 (Cons 1 Nil) corresponds to [0,1] :: 'a list

Datatypes – The General Format

datatype (α1, . . . , αn)t = C1 τ11 . . . τ1k1 | . . . | Cm τm1 . . . τmkm

� αi parameters

� Cj constructor names

Every Datatype has . . .

� many lemmas proved automatically (e.g., ~([] = x#xs) for
lists)

� a size function size :: t => nat

� an induction scheme

� a case analysis scheme

Datatypes – The General Format

datatype (α1, . . . , αn)t = C1 τ11 . . . τ1k1 | . . . | Cm τm1 . . . τmkm

� αi parameters

� Cj constructor names

Every Datatype has . . .

� many lemmas proved automatically (e.g., ~([] = x#xs) for
lists)

� a size function size :: t => nat

� an induction scheme

� a case analysis scheme

Functions on Datatypes – Primitive Recursion

� primitive recursion over datatype t uses equations of the form

f x1 . . . (C y1 . . . yk) . . . xn = b

� where C is constructor of t

� all calls to f in b have form f . . . yi . . . for some i

Intuition

� every recursive call removes one constructor symbol

� hence f terminates

Functions on Datatypes – Primitive Recursion

� primitive recursion over datatype t uses equations of the form

f x1 . . . (C y1 . . . yk) . . . xn = b

� where C is constructor of t

� all calls to f in b have form f . . . yi . . . for some i

Intuition

� every recursive call removes one constructor symbol

� hence f terminates

Example – Concatenating two Lists

primrec

append :: "'a list => 'a list => 'a list"
(infixr "@" 65)

where

"[] @ ys = ys"
| "(x # xs) @ ys = x # (xs @ ys)"

Example – Reversing a List

primrec rev :: "'a list => 'a list" where

"rev [] = []"
| "rev (x # xs) = rev xs @ (x # [])"

An Introductory Proof

"rev (rev xs) = xs"

Proof

Whiteboard

An Introductory Proof

"rev (rev xs) = xs"

Proof

Whiteboard

Some Diagnostic Commands

find_theorems 〈args〉 print all theorems matching 〈args〉
print_cases print currently available cases
prop 〈formula〉 print proposition 〈formula〉
term 〈term〉 print term 〈term〉 and its type
thm 〈name〉 print theorem called 〈name〉
typ 〈type〉 print type 〈type〉
value 〈term〉 evaluate and print 〈term〉

General Structure of a Proof

proof
def
= proof method? statement∗ qed method?

| by method method?

statement
def
= fix variables
| assume proposition+

| (from fact+)? (show | have) proposition proof

proposition
def
= (label:)? "term"

fact
def
= label
| `term`

An Introductory Proof (cont’d)

lemma append_Nil2[simp]: "xs @ [] = xs"
by (induct xs) simp_all

lemma append_assoc[simp]:
"(xs @ ys) @ zs = xs @ (ys @ zs)"
by (induct xs) simp_all

lemma rev_append[simp]:
"rev (xs @ ys) = rev ys @ rev xs"
by (induct xs) simp_all

theorem rev_rev_ident[simp]: "rev (rev xs) = xs"
by (induct xs) simp_all

Basic Types – Natural Numbers

datatype nat = 0
| Suc nat

Predefined Operations

� addition, subtraction (+, -)

� multiplication, division (*, div)

� modulo (mod)

� minimum, maximum (min, max)

� less than (or equal) (<, <=)

Basic Types – Natural Numbers

datatype nat = 0
| Suc nat

Predefined Operations

� addition, subtraction (+, -)

� multiplication, division (*, div)

� modulo (mod)

� minimum, maximum (min, max)

� less than (or equal) (<, <=)

Basic Types – Pairs

� Pair :: 'a => 'b => 'a * 'b

� fst :: 'a * 'b => 'a

� snd :: 'a * 'b => 'b

� curry :: ('a * 'b => 'c) => 'a => 'b => 'c

� split :: ('a => 'b => 'c) => 'a * 'b => 'c

Basic Types – Option

datatype 'a option = None
| Some 'a

Predefined Operations

� the :: 'a option => 'a

� Option.set :: 'a option => 'a set

Basic Types – Option

datatype 'a option = None
| Some 'a

Predefined Operations

� the :: 'a option => 'a

� Option.set :: 'a option => 'a set

Definitions – Type Synonyms

introducing new names for existing types

Examples

type_synonym number = nat
type_synonym gate = "bool => bool => bool"
type_synonym 'a plist = "('a * 'a) list"

Definitions – Type Synonyms

introducing new names for existing types

Examples

type_synonym number = nat
type_synonym gate = "bool => bool => bool"
type_synonym 'a plist = "('a * 'a) list"

Definitions – Constant Definitions

introducing new names for existing expressions

Examples

definition nand :: gate
where "nand A B == ~(A & B)"

definition xor :: gate
where "xor A B == (A & ~B) | (~A & B)"

Provided Lemmas

definition of constant 〈const〉 automatically provides lemma
〈const〉_def, stating equality between constant and its definition

Definitions – Constant Definitions

introducing new names for existing expressions

Examples

definition nand :: gate
where "nand A B == ~(A & B)"

definition xor :: gate
where "xor A B == (A & ~B) | (~A & B)"

Provided Lemmas

definition of constant 〈const〉 automatically provides lemma
〈const〉_def, stating equality between constant and its definition

Definitions – Constant Definitions

introducing new names for existing expressions

Examples

definition nand :: gate
where "nand A B == ~(A & B)"

definition xor :: gate
where "xor A B == (A & ~B) | (~A & B)"

Provided Lemmas

definition of constant 〈const〉 automatically provides lemma
〈const〉_def, stating equality between constant and its definition

The Definitional Approach

� only total functions are allowed . . .

� or else

axiomatization f :: "nat => nat" where

f_def: "f x = f x + 1"

lemma everything: "P"
proof -
fix x
have "f x = f x + 1" by (rule f_def)
from this show "P" by simp
qed

lemma wrong: "0 = 1" by (rule everything)

Exercises

1. define a primitive recursive function length that computes
the length of a list

2. prove "length (xs @ ys) = length xs + length ys"

3. define a primitive recursive function snoc that appends an
element at the end of a list (do not use @)

4. prove "snoc (rev xs) x = rev (x # xs)"

5. define a primitive recursive function replace such that
replace x y zs replaces all occurrences of x in the list zs
by y

6. prove
"replace x y (rev zs) = rev (replace x y zs)"

