
Experiments in Verification
SS 2011

Christian Sternagel

Computational Logic
Institute of Computer Science

University of Innsbruck

March 25, 2011

http://cl-informatik.uibk.ac.at

Today’s Topics

� Simplification

� Function Definitions

� Calculational Reasoning

Simplification

Example – Term Rewriting

� a set of rules, also called a term rewrite system (TRS)

0 + y → y 0× y → 0

s(x) + y → s(x + y) s(x)× y → y + (x × y)

� ‘compute’ 1× 2

s(0)× s2(0)

→ s2(0) + (0× s2(0))
→ s2(0) + 0
→ s(s(0) + 0)
→ s(s(0 + 0))
→ s2(0)

Example – Term Rewriting

� a set of rules, also called a term rewrite system (TRS)

0 + y → y 0× y → 0

s(x) + y → s(x + y) s(x)× y → y + (x × y)

� ‘compute’ 1× 2

s(0)× s2(0) → s2(0) + (0× s2(0))

→ s2(0) + 0
→ s(s(0) + 0)
→ s(s(0 + 0))
→ s2(0)

Example – Term Rewriting

� a set of rules, also called a term rewrite system (TRS)

0 + y → y 0× y → 0

s(x) + y → s(x + y) s(x)× y → y + (x × y)

� ‘compute’ 1× 2

s(0)× s2(0) → s2(0) + (0× s2(0))
→ s2(0) + 0

→ s(s(0) + 0)
→ s(s(0 + 0))
→ s2(0)

Example – Term Rewriting

� a set of rules, also called a term rewrite system (TRS)

0 + y → y 0× y → 0

s(x) + y → s(x + y) s(x)× y → y + (x × y)

� ‘compute’ 1× 2

s(0)× s2(0) → s2(0) + (0× s2(0))
→ s2(0) + 0
→ s(s(0) + 0)

→ s(s(0 + 0))
→ s2(0)

Example – Term Rewriting

� a set of rules, also called a term rewrite system (TRS)

0 + y → y 0× y → 0

s(x) + y → s(x + y) s(x)× y → y + (x × y)

� ‘compute’ 1× 2

s(0)× s2(0) → s2(0) + (0× s2(0))
→ s2(0) + 0
→ s(s(0) + 0)
→ s(s(0 + 0))

→ s2(0)

Example – Term Rewriting

� a set of rules, also called a term rewrite system (TRS)

0 + y → y 0× y → 0

s(x) + y → s(x + y) s(x)× y → y + (x × y)

� ‘compute’ 1× 2

s(0)× s2(0) → s2(0) + (0× s2(0))
→ s2(0) + 0
→ s(s(0) + 0)
→ s(s(0 + 0))
→ s2(0)

In Isabelle

datatype num = Zero | Succ num

notation Zero ("0")
notation Succ ("s'(_')")

primrec

add :: "num => num => num" (infixl "+" 65)
where

"(0::num) + y = y"
| "s(x) + y = s(x + y)"

primrec

mul :: "num => num => num" (infixl "×" 70)
where

"(0::num) × y = 0"
| "s(x) × y = y + (x × y)"

Explanatory Notes

� 0 and + are overloaded, hence we need type constraint

� use ' within syntax annotations to escape characters with
special meaning, e.g., '(for an opening parenthesis (special
meaning: start a group for pretty printing) or '_ for an
underscore (special meaning: argument placeholder)

� to get symbols like × use Unicode Tokens (see next slide)

� we automatically get lemmas add.simps and mul.simps

Explanatory Notes

� 0 and + are overloaded, hence we need type constraint

� use ' within syntax annotations to escape characters with
special meaning, e.g., '(for an opening parenthesis (special
meaning: start a group for pretty printing) or '_ for an
underscore (special meaning: argument placeholder)

� to get symbols like × use Unicode Tokens (see next slide)

� we automatically get lemmas add.simps and mul.simps

Explanatory Notes

� 0 and + are overloaded, hence we need type constraint

� use ' within syntax annotations to escape characters with
special meaning, e.g., '(for an opening parenthesis (special
meaning: start a group for pretty printing) or '_ for an
underscore (special meaning: argument placeholder)

� to get symbols like × use Unicode Tokens (see next slide)

� we automatically get lemmas add.simps and mul.simps

Explanatory Notes

� 0 and + are overloaded, hence we need type constraint

� use ' within syntax annotations to escape characters with
special meaning, e.g., '(for an opening parenthesis (special
meaning: start a group for pretty printing) or '_ for an
underscore (special meaning: argument placeholder)

� to get symbols like × use Unicode Tokens (see next slide)

� we automatically get lemmas add.simps and mul.simps

Explanatory Notes

� 0 and + are overloaded, hence we need type constraint

� use ' within syntax annotations to escape characters with
special meaning, e.g., '(for an opening parenthesis (special
meaning: start a group for pretty printing) or '_ for an
underscore (special meaning: argument placeholder)

� to get symbols like × use Unicode Tokens (see next slide)

� we automatically get lemmas add.simps and mul.simps

Explanatory Notes

� 0 and + are overloaded, hence we need type constraint

� use ' within syntax annotations to escape characters with
special meaning, e.g., '(for an opening parenthesis (special
meaning: start a group for pretty printing) or '_ for an
underscore (special meaning: argument placeholder)

� to get symbols like × use Unicode Tokens (see next slide)

� we automatically get lemmas add.simps and mul.simps

Explanatory Notes

� 0 and + are overloaded, hence we need type constraint

� use ' within syntax annotations to escape characters with
special meaning, e.g., '(for an opening parenthesis (special
meaning: start a group for pretty printing) or '_ for an
underscore (special meaning: argument placeholder)

� to get symbols like × use Unicode Tokens (see next slide)

� we automatically get lemmas add.simps and mul.simps

Unicode Tokens (Emacs)

ASCII Unicode Token shown as ASCII Unicode Token shown as

=> \<Rightarrow> ⇒ ALL \<forall> ∀
--> \<longrightarrow> −→ EX \<exists> ∃
==> \<Longrightarrow> =⇒ & \<and> ∧
!! \<And>

∧
| \<or> ∨

== \<equiv> ≡ ~ \<not> ¬
~= \<noteq> 6= % \<lambda> λ
: \<in> ∈ * \<times> ×
~: \<notin> /∈ o \<circ> ◦
Un \<union> ∪ [| \<lbrakk> [[
Int \<inter> ∩ |] \<rbrakk>]]

Union \<Union>
⋃

<= \<subseteq> ⊆
Inter \<Inter>

⋂
< \<subset> ⊂

� Emacs: Proof-General → Quick Options → Display →
Unicode Tokens

� jEdit: several predefined abbreviations achieve a similar effect

Unicode Tokens (Emacs)

ASCII Unicode Token shown as ASCII Unicode Token shown as

=> \<Rightarrow> ⇒ ALL \<forall> ∀
--> \<longrightarrow> −→ EX \<exists> ∃
==> \<Longrightarrow> =⇒ & \<and> ∧
!! \<And>

∧
| \<or> ∨

== \<equiv> ≡ ~ \<not> ¬
~= \<noteq> 6= % \<lambda> λ
: \<in> ∈ * \<times> ×
~: \<notin> /∈ o \<circ> ◦
Un \<union> ∪ [| \<lbrakk> [[
Int \<inter> ∩ |] \<rbrakk>]]

Union \<Union>
⋃

<= \<subseteq> ⊆
Inter \<Inter>

⋂
< \<subset> ⊂

� Emacs: Proof-General → Quick Options → Display →
Unicode Tokens

� jEdit: several predefined abbreviations achieve a similar effect

Unicode Tokens (Emacs)

ASCII Unicode Token shown as ASCII Unicode Token shown as

=> \<Rightarrow> ⇒ ALL \<forall> ∀
--> \<longrightarrow> −→ EX \<exists> ∃
==> \<Longrightarrow> =⇒ & \<and> ∧
!! \<And>

∧
| \<or> ∨

== \<equiv> ≡ ~ \<not> ¬
~= \<noteq> 6= % \<lambda> λ
: \<in> ∈ * \<times> ×
~: \<notin> /∈ o \<circ> ◦
Un \<union> ∪ [| \<lbrakk> [[
Int \<inter> ∩ |] \<rbrakk>]]

Union \<Union>
⋃

<= \<subseteq> ⊆
Inter \<Inter>

⋂
< \<subset> ⊂

� Emacs: Proof-General → Quick Options → Display →
Unicode Tokens

� jEdit: several predefined abbreviations achieve a similar effect

Using Simplification Rules Automatically

lemma "s(s(0)) × s(s(0)) = s(s(s(s(0))))" by simp

Using Simplification Rules Explicitly

lemma "s(s(0)) × s(s(0)) = s(s(s(s(0))))"
unfolding add.simps mul.simps by (rule refl)

Using Simplification Rules Automatically

lemma "s(s(0)) × s(s(0)) = s(s(s(s(0))))" by simp

Using Simplification Rules Explicitly

lemma "s(s(0)) × s(s(0)) = s(s(s(s(0))))"
unfolding add.simps mul.simps by (rule refl)

Modifying the Simpset

� simpset is set of simplification rules currently in use

� adding a lemma to the simpset
declare 〈theorem-name〉[simp]

� deleting a lemma from the simpset
declare 〈theorem-name〉[simp del]

Example

declare add.simps[simp del]
lemma "0 + s(0) = s(0)" oops

Modifying the Simpset

� simpset is set of simplification rules currently in use

� adding a lemma to the simpset
declare 〈theorem-name〉[simp]

� deleting a lemma from the simpset
declare 〈theorem-name〉[simp del]

Example

declare add.simps[simp del]
lemma "0 + s(0) = s(0)" oops

Modifying the Simpset

� simpset is set of simplification rules currently in use

� adding a lemma to the simpset
declare 〈theorem-name〉[simp]

� deleting a lemma from the simpset
declare 〈theorem-name〉[simp del]

Example

declare add.simps[simp del]
lemma "0 + s(0) = s(0)" oops

Modifying the Simpset

� simpset is set of simplification rules currently in use

� adding a lemma to the simpset
declare 〈theorem-name〉[simp]

� deleting a lemma from the simpset
declare 〈theorem-name〉[simp del]

Example

declare add.simps[simp del]
lemma "0 + s(0) = s(0)" oops

Modifying the Simpset

� simpset is set of simplification rules currently in use

� adding a lemma to the simpset
declare 〈theorem-name〉[simp]

� deleting a lemma from the simpset
declare 〈theorem-name〉[simp del]

Example

declare add.simps[simp del]
lemma "0 + s(0) = s(0)" oops

Modifying the Simpset

� simpset is set of simplification rules currently in use

� adding a lemma to the simpset
declare 〈theorem-name〉[simp]

� deleting a lemma from the simpset
declare 〈theorem-name〉[simp del]

Example

declare add.simps[simp del]
lemma "0 + s(0) = s(0)" oops

A More Complete Grammar for Proofs

proof
def
= prefix∗ proof method? statement∗ qed method?

| prefix∗ by method method?

prefix
def
= apply method
| using fact∗

| unfolding fact∗

statement
def
= fix variables
| assume proposition+

| (from fact+)? (show | have) proposition proof

proposition
def
= (label:)? "term"

fact
def
= label
| `term`

A Proof by Hand

lemma "s(s(0)) × s(s(0)) = s(s(s(s(0))))"
proof -
have "s(s(0)) × s(s(0)) =

s(s(0)) + s(0) × s(s(0))"
unfolding mul.simps by (rule refl)

from this have "s(s(0)) × s(s(0)) =
s(s(0)) + (s(s(0)) + 0 × s(s(0)))"

unfolding mul.simps .
from this have "s(s(0)) × s(s(0)) =

s(s(0)) + (s(s(0)) + 0)"
unfolding mul.simps .

from this show ?thesis unfolding add.simps .
qed

The simp Method – General Format

simp 〈list of modifiers〉

Modifiers

� add: 〈list of theorem names〉
� del: 〈list of theorem names〉
� only: 〈list of theorem names〉

Example

lemma "s(s(0)) × s(s(0)) = s(s(s(s(0))))"
by (simp only: add.simps mul.simps)

The simp Method – General Format

simp 〈list of modifiers〉

Modifiers

� add: 〈list of theorem names〉
� del: 〈list of theorem names〉
� only: 〈list of theorem names〉

Example

lemma "s(s(0)) × s(s(0)) = s(s(s(s(0))))"
by (simp only: add.simps mul.simps)

The simp Method – General Format

simp 〈list of modifiers〉

Modifiers

� add: 〈list of theorem names〉

� del: 〈list of theorem names〉
� only: 〈list of theorem names〉

Example

lemma "s(s(0)) × s(s(0)) = s(s(s(s(0))))"
by (simp only: add.simps mul.simps)

The simp Method – General Format

simp 〈list of modifiers〉

Modifiers

� add: 〈list of theorem names〉
� del: 〈list of theorem names〉

� only: 〈list of theorem names〉

Example

lemma "s(s(0)) × s(s(0)) = s(s(s(s(0))))"
by (simp only: add.simps mul.simps)

The simp Method – General Format

simp 〈list of modifiers〉

Modifiers

� add: 〈list of theorem names〉
� del: 〈list of theorem names〉
� only: 〈list of theorem names〉

Example

lemma "s(s(0)) × s(s(0)) = s(s(s(s(0))))"
by (simp only: add.simps mul.simps)

The simp Method – General Format

simp 〈list of modifiers〉

Modifiers

� add: 〈list of theorem names〉
� del: 〈list of theorem names〉
� only: 〈list of theorem names〉

Example

lemma "s(s(0)) × s(s(0)) = s(s(s(s(0))))"
by (simp only: add.simps mul.simps)

A General Format for Stating Theorems

theorem
def
= kind goal
| kind name : goal
| kind [attributes]: goal
| kind name[attributes]: goal

kind
def
= theorem | lemma | corollary

goal
def
= (fixes variables)? (assumes prop+)? shows prop+

| prop+

prop
def
= (label:)? "term"

Example

lemma some_lemma[simp]:
fixes A :: "bool" (*"A" has type "bool"*)
assumes AnA: "A ∧ A" (*give the name "AnA"*)
shows "A"

using AnA by simp

Assumptions

� by default assumptions are used as simplification rules +
assumptions are simplified themselves

lemma

assumes "xs @ zs = ys @ xs"
and "[] @ xs = [] @ []"

shows "ys = zs"
using assms by simp

� this can lead to nontermination
lemma

assumes "∀x. f x = g (f (g x))"
shows "f [] = f [] @ []"

using assms by simp

Assumptions

� by default assumptions are used as simplification rules +
assumptions are simplified themselves

lemma

assumes "xs @ zs = ys @ xs"
and "[] @ xs = [] @ []"

shows "ys = zs"
using assms by simp

� this can lead to nontermination
lemma

assumes "∀x. f x = g (f (g x))"
shows "f [] = f [] @ []"

using assms by simp

Assumptions

� by default assumptions are used as simplification rules +
assumptions are simplified themselves

lemma

assumes "xs @ zs = ys @ xs"
and "[] @ xs = [] @ []"

shows "ys = zs"
using assms by simp

� this can lead to nontermination
lemma

assumes "∀x. f x = g (f (g x))"
shows "f [] = f [] @ []"

using assms by simp

The simp Method – More Modifiers

� (no_asm) assumptions are ignored

� (no_asm_simps) assumptions are not simplified themselves

� (no_asm_use) assumptions are simplified but not added to
simpset

The simp Method – More Modifiers

� (no_asm) assumptions are ignored

� (no_asm_simps) assumptions are not simplified themselves

� (no_asm_use) assumptions are simplified but not added to
simpset

The simp Method – More Modifiers

� (no_asm) assumptions are ignored

� (no_asm_simps) assumptions are not simplified themselves

� (no_asm_use) assumptions are simplified but not added to
simpset

The simp Method – More Modifiers

� (no_asm) assumptions are ignored

� (no_asm_simps) assumptions are not simplified themselves

� (no_asm_use) assumptions are simplified but not added to
simpset

Tracing

� set Isabelle → Settings → Tracing → Trace
Simplifier

� useful to get a feeling for simplification rules

� see which rules are applied

� find out why simplification loops

Tracing

� set Isabelle → Settings → Tracing → Trace
Simplifier

� useful to get a feeling for simplification rules

� see which rules are applied

� find out why simplification loops

Tracing

� set Isabelle → Settings → Tracing → Trace
Simplifier

� useful to get a feeling for simplification rules

� see which rules are applied

� find out why simplification loops

Tracing

� set Isabelle → Settings → Tracing → Trace
Simplifier

� useful to get a feeling for simplification rules

� see which rules are applied

� find out why simplification loops

Tracing

� set Isabelle → Settings → Tracing → Trace
Simplifier

� useful to get a feeling for simplification rules

� see which rules are applied

� find out why simplification loops

Digression – Finding Theorems

Start Search

� either by keyboard shortcut (only Emacs) Ctrl + C, Ctrl + F, or

� entering the command find_theorems

Search Criteria

� a number in parenthesis specifies number of shown results

� a pattern in quotes specifies the term to be searched for

� a pattern may contain wild cards ‘_’, and type constraints

� precede a pattern by simp: to only search for theorems that
could simplify the specified term at the root

� to search for part of a name use name: "〈some string〉"
� negate a search criterion by prefixing a minus, e.g., -name:

Digression – Finding Theorems

Start Search

� either by keyboard shortcut (only Emacs) Ctrl + C, Ctrl + F, or

� entering the command find_theorems

Search Criteria

� a number in parenthesis specifies number of shown results

� a pattern in quotes specifies the term to be searched for

� a pattern may contain wild cards ‘_’, and type constraints

� precede a pattern by simp: to only search for theorems that
could simplify the specified term at the root

� to search for part of a name use name: "〈some string〉"
� negate a search criterion by prefixing a minus, e.g., -name:

Digression – Finding Theorems

Start Search

� either by keyboard shortcut (only Emacs) Ctrl + C, Ctrl + F, or

� entering the command find_theorems

Search Criteria

� a number in parenthesis specifies number of shown results

� a pattern in quotes specifies the term to be searched for

� a pattern may contain wild cards ‘_’, and type constraints

� precede a pattern by simp: to only search for theorems that
could simplify the specified term at the root

� to search for part of a name use name: "〈some string〉"
� negate a search criterion by prefixing a minus, e.g., -name:

Digression – Finding Theorems

Start Search

� either by keyboard shortcut (only Emacs) Ctrl + C, Ctrl + F, or

� entering the command find_theorems

Search Criteria

� a number in parenthesis specifies number of shown results

� a pattern in quotes specifies the term to be searched for

� a pattern may contain wild cards ‘_’, and type constraints

� precede a pattern by simp: to only search for theorems that
could simplify the specified term at the root

� to search for part of a name use name: "〈some string〉"
� negate a search criterion by prefixing a minus, e.g., -name:

Digression – Finding Theorems

Start Search

� either by keyboard shortcut (only Emacs) Ctrl + C, Ctrl + F, or

� entering the command find_theorems

Search Criteria

� a number in parenthesis specifies number of shown results

� a pattern in quotes specifies the term to be searched for

� a pattern may contain wild cards ‘_’, and type constraints

� precede a pattern by simp: to only search for theorems that
could simplify the specified term at the root

� to search for part of a name use name: "〈some string〉"
� negate a search criterion by prefixing a minus, e.g., -name:

Digression – Finding Theorems

Start Search

� either by keyboard shortcut (only Emacs) Ctrl + C, Ctrl + F, or

� entering the command find_theorems

Search Criteria

� a number in parenthesis specifies number of shown results

� a pattern in quotes specifies the term to be searched for

� a pattern may contain wild cards ‘_’, and type constraints

� precede a pattern by simp: to only search for theorems that
could simplify the specified term at the root

� to search for part of a name use name: "〈some string〉"
� negate a search criterion by prefixing a minus, e.g., -name:

Digression – Finding Theorems

Start Search

� either by keyboard shortcut (only Emacs) Ctrl + C, Ctrl + F, or

� entering the command find_theorems

Search Criteria

� a number in parenthesis specifies number of shown results

� a pattern in quotes specifies the term to be searched for

� a pattern may contain wild cards ‘_’, and type constraints

� precede a pattern by simp: to only search for theorems that
could simplify the specified term at the root

� to search for part of a name use name: "〈some string〉"

� negate a search criterion by prefixing a minus, e.g., -name:

Digression – Finding Theorems

Start Search

� either by keyboard shortcut (only Emacs) Ctrl + C, Ctrl + F, or

� entering the command find_theorems

Search Criteria

� a number in parenthesis specifies number of shown results

� a pattern in quotes specifies the term to be searched for

� a pattern may contain wild cards ‘_’, and type constraints

� precede a pattern by simp: to only search for theorems that
could simplify the specified term at the root

� to search for part of a name use name: "〈some string〉"
� negate a search criterion by prefixing a minus, e.g., -name:

Function Definitions

Example

fun fib :: "nat => nat" where

"fib 0 = Suc 0"
| "fib (Suc 0) = Suc 0"
| "fib (Suc (Suc n)) = fib n + fib (Suc n)"

Lemma

0 < fib n

Example

fun fib :: "nat => nat" where

"fib 0 = Suc 0"
| "fib (Suc 0) = Suc 0"
| "fib (Suc (Suc n)) = fib n + fib (Suc n)"

Lemma

0 < fib n

Abbreviations

� this: the previous proposition proved or assumed

� then: from this

� hence: then have

� thus: then show

� with 〈facts〉: from 〈facts〉 this

Abbreviations

� this: the previous proposition proved or assumed

� then: from this

� hence: then have

� thus: then show

� with 〈facts〉: from 〈facts〉 this

Abbreviations

� this: the previous proposition proved or assumed

� then: from this

� hence: then have

� thus: then show

� with 〈facts〉: from 〈facts〉 this

Abbreviations

� this: the previous proposition proved or assumed

� then: from this

� hence: then have

� thus: then show

� with 〈facts〉: from 〈facts〉 this

Abbreviations

� this: the previous proposition proved or assumed

� then: from this

� hence: then have

� thus: then show

� with 〈facts〉: from 〈facts〉 this

Abbreviations

� this: the previous proposition proved or assumed

� then: from this

� hence: then have

� thus: then show

� with 〈facts〉: from 〈facts〉 this

The Command fun

� in principle arbitrary pattern matching on left-hand sides

� patterns are matched top to bottom

� fun tries to prove termination automatically (current method:
lexicographic orders)

� use function instead of fun to provide a manual termination
prove

� for further information: isabelle doc functions

The Command fun

� in principle arbitrary pattern matching on left-hand sides

� patterns are matched top to bottom

� fun tries to prove termination automatically (current method:
lexicographic orders)

� use function instead of fun to provide a manual termination
prove

� for further information: isabelle doc functions

The Command fun

� in principle arbitrary pattern matching on left-hand sides

� patterns are matched top to bottom

� fun tries to prove termination automatically (current method:
lexicographic orders)

� use function instead of fun to provide a manual termination
prove

� for further information: isabelle doc functions

The Command fun

� in principle arbitrary pattern matching on left-hand sides

� patterns are matched top to bottom

� fun tries to prove termination automatically (current method:
lexicographic orders)

� use function instead of fun to provide a manual termination
prove

� for further information: isabelle doc functions

The Command fun

� in principle arbitrary pattern matching on left-hand sides

� patterns are matched top to bottom

� fun tries to prove termination automatically (current method:
lexicographic orders)

� use function instead of fun to provide a manual termination
prove

� for further information: isabelle doc functions

The Command fun

� in principle arbitrary pattern matching on left-hand sides

� patterns are matched top to bottom

� fun tries to prove termination automatically (current method:
lexicographic orders)

� use function instead of fun to provide a manual termination
prove

� for further information: isabelle doc functions

Calculational Reasoning

Additional Commands

� also: to apply transitivity automatically

� finally: to reconsider first left-hand side

� . . .: to abbreviate previous right-hand side

Additional Commands

� also: to apply transitivity automatically

� finally: to reconsider first left-hand side

� . . .: to abbreviate previous right-hand side

Additional Commands

� also: to apply transitivity automatically

� finally: to reconsider first left-hand side

� . . .: to abbreviate previous right-hand side

Additional Commands

� also: to apply transitivity automatically

� finally: to reconsider first left-hand side

� . . .: to abbreviate previous right-hand side

An Example Proof (Base Case)

primrec sum :: "nat => nat" where

"sum 0 = 0"
| "sum (Suc n) = Suc n + sum n"

lemma "sum n = (n * (Suc n)) div (Suc (Suc 0))"
proof (induct n)
case 0 show ?case by simp
next

An Example Proof (Step Case)

case (Suc n)
hence IH: "sum n = (n*(Suc n)) div (Suc(Suc 0))" .
have "sum(Suc n) = Suc n + sum n" by simp
also

have ". . . = Suc n + ((n*(Suc n)) div (Suc(Suc 0)))"
unfolding IH by simp

also have ". . . = ((Suc(Suc 0)*Suc n) div Suc(Suc 0)) +
((n*(Suc n)) div Suc(Suc 0))" by arith

also have ". . . = (Suc(Suc 0)*Suc n + n*(Suc n)) div
Suc(Suc 0)" by arith

also

have ". . . = ((Suc(Suc 0) + n)*Suc n) div Suc(Suc 0)"
unfolding add_mult_distrib by simp

also have ". . . = (Suc(Suc n) * Suc n) div Suc(Suc 0)"
by simp

finally show ?case by simp
qed

Remarks

� cases are named by the corresponding datatype constructors

� ?case is an abbreviation installed for the current goal in each
case of an induction proof

� case 0 sets up the assumption corresponding to the base
case (i.e., no assumption at all)

� case (Suc n) sets up the corresponding assumption

fix n assume "sum n = (n*Suc n) div Suc(Suc 0)"

� arith is a decision procedure for Presburger Arithmetic

� . abbreviates by assumption

Remarks

� cases are named by the corresponding datatype constructors

� ?case is an abbreviation installed for the current goal in each
case of an induction proof

� case 0 sets up the assumption corresponding to the base
case (i.e., no assumption at all)

� case (Suc n) sets up the corresponding assumption

fix n assume "sum n = (n*Suc n) div Suc(Suc 0)"

� arith is a decision procedure for Presburger Arithmetic

� . abbreviates by assumption

Remarks

� cases are named by the corresponding datatype constructors

� ?case is an abbreviation installed for the current goal in each
case of an induction proof

� case 0 sets up the assumption corresponding to the base
case (i.e., no assumption at all)

� case (Suc n) sets up the corresponding assumption

fix n assume "sum n = (n*Suc n) div Suc(Suc 0)"

� arith is a decision procedure for Presburger Arithmetic

� . abbreviates by assumption

Remarks

� cases are named by the corresponding datatype constructors

� ?case is an abbreviation installed for the current goal in each
case of an induction proof

� case 0 sets up the assumption corresponding to the base
case (i.e., no assumption at all)

� case (Suc n) sets up the corresponding assumption

fix n assume "sum n = (n*Suc n) div Suc(Suc 0)"

� arith is a decision procedure for Presburger Arithmetic

� . abbreviates by assumption

Remarks

� cases are named by the corresponding datatype constructors

� ?case is an abbreviation installed for the current goal in each
case of an induction proof

� case 0 sets up the assumption corresponding to the base
case (i.e., no assumption at all)

� case (Suc n) sets up the corresponding assumption

fix n assume "sum n = (n*Suc n) div Suc(Suc 0)"

� arith is a decision procedure for Presburger Arithmetic

� . abbreviates by assumption

Remarks

� cases are named by the corresponding datatype constructors

� ?case is an abbreviation installed for the current goal in each
case of an induction proof

� case 0 sets up the assumption corresponding to the base
case (i.e., no assumption at all)

� case (Suc n) sets up the corresponding assumption

fix n assume "sum n = (n*Suc n) div Suc(Suc 0)"

� arith is a decision procedure for Presburger Arithmetic

� . abbreviates by assumption

Remarks

� cases are named by the corresponding datatype constructors

� ?case is an abbreviation installed for the current goal in each
case of an induction proof

� case 0 sets up the assumption corresponding to the base
case (i.e., no assumption at all)

� case (Suc n) sets up the corresponding assumption

fix n assume "sum n = (n*Suc n) div Suc(Suc 0)"

� arith is a decision procedure for Presburger Arithmetic

� . abbreviates by assumption

Remarks

� cases are named by the corresponding datatype constructors

� ?case is an abbreviation installed for the current goal in each
case of an induction proof

� case 0 sets up the assumption corresponding to the base
case (i.e., no assumption at all)

� case (Suc n) sets up the corresponding assumption

fix n assume "sum n = (n*Suc n) div Suc(Suc 0)"

� arith is a decision procedure for Presburger Arithmetic

� . abbreviates by assumption

Exercises

http://isabelle.in.tum.de/exercises/arith/powSum/ex.pdf

http://isabelle.in.tum.de/exercises/arith/powSum/ex.pdf

