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Today's Topics

e Simplification
e Function Definitions

¢ Calculational Reasoning



Simplification



Example — Term Rewriting

e a set of rules, also called a term rewrite system (TRS)

O+y—y Oxy—20
s(x) +y —s(x+y) s(x) xy =y +(xxy)

e ‘compute’ 1 x 2

s(0) x s2(0)
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e a set of rules, also called a term rewrite system (TRS)
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Example — Term Rewriting

e a set of rules, also called a term rewrite system (TRS)

O+y—y Oxy—20
s(x) +y —s(x+y) s(x) xy =y +(xxy)

e ‘compute’ 1 x 2

s(0) x s2(0)  — Szgg; + E)O x 52(0))
— S —+
— s(s(0) +0)
— s(s(0+0))
— s%(0)



In Isabelle

datatype num = Zero | Succ num

notation Zero ("0")
notation Succ ("s'(_')")

primrec

add :: => num => num" (infixl "+" 65)
where

"(0::num) + y = y"
| "s(x) + s(x + y)"

primrec

mul :: "num => num => num" (infixl "Xx" 70)
where

"(0::num) X y = 0"
[RF-169) Xxy=y+ &xy"
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Explanatory Notes

e 0 and + are overloaded, hence we need type constraint

e use ' within syntax annotations to escape characters with
special meaning, e.g., ' ( for an opening parenthesis (special
meaning: start a group for pretty printing) or ' _ for an
underscore (special meaning: argument placeholder)

e to get symbols like x use Unicode Tokens (see next slide)

e we automatically get lemmas add.simps and mul.simps



Unicode Tokens (Emacs)

ASCII Unicode Token shown as ASCIIl Unicode Token shown as

=> \<Rightarrow> = ALL  \<forall> v
--> \<longrightarrow> — EX \<exists> 3
==> \<Longrightarrow> =—> & \<and> A

1 \<And> A | \<or> \

== \<equiv> = ~ \<not> =

“= \<noteqg> %+ % \<lambda> A

\<in> € * \<times> X

- \<notin> ¢ 0 \<circ> o
Un \<union> U [l \<1lbrakk> I
Int \<inter> N 1] \<rbrakk> 1

Union \<Union> U <= \<subseteq> -
Inter \<Inter> N < \<subset> C
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Unicode Tokens (Emacs)

ASCII Unicode Token shown as ASCIIl Unicode Token shown as

=> \<Rightarrow> = ALL  \<forall> v
--> \<longrightarrow> — EX \<exists> 3
==> \<Longrightarrow> =—> & \<and> A
1 \<And> A | \<or> \
== \<equiv> = ~ \<not> =
“= \<noteqg> %+ % \<lambda> A

: \<in> € * \<times> X

- \<notin> ¢ 0 \<circ> o
Un \<union> U [l \<1lbrakk> I
Int \<inter> N 1] \<rbrakk> 1
Union \<Union> U <= \<subseteq> -
Inter \<Inter> N < \<subset> C

e Emacs: Proof-General — Quick Options — Display —
Unicode Tokens

e jEdit: several predefined abbreviations achieve a similar effect
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Using Simplification Rules Automatically
lemma "s(s(0)) x s(s(0)) = s(s(s(s(0))))" by simp

Using Simplification Rules Explicitly

lemma "s(s(0)) x s(s(0)) = s(s(s(s(0O))))"

unfolding add.simps mul.simps by (rule refl)
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Modifying the Simpset

e simpset is set of simplification rules currently in use

e adding a lemma to the simpset
declare (theorem-name) [simp]

e deleting a lemma from the simpset
declare (theorem-name)[simp dell

declare add.simps[simp del]

lemma "0 + s(0) = s(0)" oops




A More Complete Grammar for Proofs

proof

prefix

statement

proposition

fact

a
LN

€

o a
5 — — |8
= -

prefix* proof method’ statement®™ qed method’
prefix* by method method’

apply method
using fact*
unfolding fact*

fix variables
assume proposition™
(from fact™)’? (show | have) proposition proof

(label :)? "term"

label
Tterm”



A Proof by Hand

lemma "s(s(0)) x s(s(0)) = s(s(s(s(0))))"
proof -
have "s(s(0)) x s(s(0)) =
s(s(0)) + s(0) x s(s(O))"
unfolding mul.simps by (rule refl)
from this have "s(s(0)) x s(s(0)) =

s(s(0)) + (s(s(0)) + 0 x s(s(0)))"
unfolding mul.simps .
from this have "s(s(0)) x s(s(0)) =
s(s(0)) + (s(s(0)) + O)"
unfolding mul.simps .
from this show 7thesis unfolding add.simps .
qed
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The simp Method — General Format

simp (list of modifiers)

e add: (list of theorem names)
e del: (list of theorem names)

e only: (list of theorem names)

lemma "s(s(0)) x s(s(0)) = s(s(s(s(0))))"

by (simp only: add.simps mul.simps)



A General Format for Stating Theorems

a
o)
o

theorem = kind goal
|  kind name : goal
| kind [attributes] : goal
ind name Lattributes] : goa
kind [attributes] : goal
kind = theorem | lemma | corollary
goal £ (fixes variables)’ (assumes propt)? shows prop™
| prop™
prop = (label :)? "term"



lemma some_lemma[simp]:
fixes A :: "bool"
assumes AnA: "A A A"
shows "A"

using AnA by simp







e by default assumptions are used as simplification rules +
assumptions are simplified themselves

lemma

assumes '"xs @ zs = ys Q@ xs"
and "[] © (1 e [1"

shows '"ys =
using assms by simp



e by default assumptions are used as simplification rules +
assumptions are simplified themselves
lemma

assumes '"xs @ zs = ys @ xs"

and "[] @ e (1"
shows "ys = "
using assms by simp
e this can lead to nontermination
lemma
assumes "Vx. f x = g (f (g x))"

shows "f [] = f [] @ []"
using assms by simp
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The simp Method — More Modifiers

e (no_asm) assumptions are ignored
e (no_asm_simps) assumptions are not simplified themselves

e (no_asm_use) assumptions are simplified but not added to
simpset
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set Isabelle — Settings — Tracing — Trace
Simplifier

useful to get a feeling for simplification rules

see which rules are applied

find out why simplification loops
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Digression — Finding Theorems

e ejther by keyboard shortcut (only Emacs) Ctrl+C, Ctrl+F, or

e entering the command find_theorems

Search Criteria

e a number in parenthesis specifies number of shown results
e a pattern in quotes specifies the term to be searched for

e a pattern may contain wild cards ‘_', and type constraints

e precede a pattern by simp: to only search for theorems that
could simplify the specified term at the root

to search for part of a name use name: "(some string)"

negate a search criterion by prefixing a minus, e.g., —name:



Function Definitions



fun fib :: "nat => nat" where
"fib 0 = Suc 0"

| "fib (Suc 0) = Suc 0"
| "fib (Suc (Suc n)) = fib n + fib (Suc n)"




fun fib :: "nat => nat" where
"fib 0 = Suc 0"

| "fib (Suc 0) = Suc 0"
| "fib (Suc (Suc n)) = fib n + fib (Suc n)"

Lemma

0 < fib n
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e this: the previous proposition proved or assumed
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this: the previous proposition proved or assumed

then: from this
hence: then have
thus: then show
e with (facts): from (facts) this
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The Command fun

e in principle arbitrary pattern matching on left-hand sides

e patterns are matched top to bottom

e fun tries to prove termination automatically (current method:
lexicographic orders)

e use function instead of fun to provide a manual termination
prove

for further information: isabelle doc functions



Calculational Reasoning
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Additional Commands

e also: to apply transitivity automatically
e finally: to reconsider first left-hand side

e ...: to abbreviate previous right-hand side



An Example Proof (Base Case)
"nat => nat" where

= Q"
Suc n + sum n"

primrec sum ::
"sum O
| "sum (Suc n)

lemma "sum n =
proof (induct n)
case 0 show 7case by simp

(n * (Suc n)) div (Suc (Suc 0))"

next




An Example Proof (Step Case)

case (Suc n)
hence IH: "sum n = (n*(Suc n)) div (Suc(Suc 0))"
have "sum(Suc n) Suc n + sum n" by simp
also
have "... = Suc n + ((n*(Suc n)) div (Suc(Suc 0)))"
unfolding IH by simp
also have "... = ((Suc(Suc 0)*Suc n) div Suc(Suc 0))
((n*(Suc n)) div Suc(Suc 0))" by arith
also have "... = (Suc(Suc 0)*Suc n + n*(Suc n)) div
Suc(Suc 0)" by arith
also
have "... = ((Suc(Suc 0) + n)*Suc n) div Suc(Suc 0)"
unfolding add_mult_distrib by simp
also have "... = (Suc(Suc n) * Suc n) div Suc(Suc 0)"
by simp
finally show 7case by simp
qed
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e cases are named by the corresponding datatype constructors

e 7case is an abbreviation installed for the current goal in each
case of an induction proof

e case 0 sets up the assumption corresponding to the base
case (i.e., no assumption at all)

e case (Suc n) sets up the corresponding assumption

fix n assume "sum n = (n*Suc n) div Suc(Suc 0)"
e arith is a decision procedure for Presburger Arithmetic

e . abbreviates by assumption



Exercises

http://isabelle.in.tum.de/exercises/arith/powSum/ex.pdf


http://isabelle.in.tum.de/exercises/arith/powSum/ex.pdf

