

# Experiments in Verification

## SS 2011

Christian Sternagel

A detailed circular seal of the University of Innsbruck. The outer ring contains the text ".1673 SIGILLVM CESAREO TYP". The inner circle depicts a figure, likely a saint or a personification of knowledge, holding a book and a key, with a crown on their head. There are also heraldic symbols and a small plaque at the bottom left with the text "LEO FEL POLICI".

Computational Logic  
Institute of Computer Science  
University of Innsbruck

April 1, 2011

## Today's Topics

- Natural Deduction
- Propositional Logic
- Predicate Logic

## Natural Deduction

## Isabelle's Meta-Logic

- description: minimal intuitionistic higher-order logic

## Isabelle's Meta-Logic

- description: minimal intuitionistic higher-order logic
- connectives

## Isabelle's Meta-Logic

- description: minimal intuitionistic higher-order logic
- connectives
  - $\wedge$ : universal quantifier

## Isabelle's Meta-Logic

- description: minimal intuitionistic higher-order logic
- connectives
  - $\wedge$ : universal quantifier
  - $\Rightarrow$ : implication

## Isabelle's Meta-Logic

- description: minimal intuitionistic higher-order logic
- connectives
  - $\wedge$ : universal quantifier
  - $\Rightarrow$ : implication
  - $\equiv$ : equality

## Isabelle's Meta-Logic

- description: minimal intuitionistic higher-order logic
- connectives
  - $\wedge$ : universal quantifier
  - $\Rightarrow$ : implication
  - $\equiv$ : equality

### Example

$$\bigwedge x\ y.\ x \equiv y \Rightarrow y \equiv x$$

## Schematic Variables

free variables and (meta) universally quantified variables (at the outermost level) are both turned into schematic variables after a proof

## Schematic Variables

free variables and (meta) universally quantified variables (at the outermost level) are both turned into schematic variables after a proof

## Meta-Equality

in almost any case, equality ( $=$ ) may be used instead of meta-equality ( $\equiv$ )

## Schematic Variables

free variables and (meta) universally quantified variables (at the outermost level) are both turned into schematic variables after a proof

## Meta-Equality

in almost any case, equality ( $=$ ) may be used instead of meta-equality ( $\equiv$ )

## Meta-Implication

- nested implications associate to the right and
- may be abbreviated by  $\llbracket A_1 ; \dots ; A_n \rrbracket \implies B$  instead of  $A_1 \implies \dots \implies A_n \implies B$
- **assumes  $A$  shows  $B$**  is turned into  $A \implies B$  after a proof

## Natural Deduction

- $$\frac{A_1 \quad \dots \quad A_n}{B} \langle \text{name} \rangle$$

## Natural Deduction

- $$\frac{A_1 \quad \dots \quad A_n}{B} \langle \text{name} \rangle$$
- **premises**  $A_1, \dots, A_n$

## Natural Deduction

$$\bullet \frac{A_1 \quad \dots \quad A_n}{B} \langle \text{name} \rangle$$

- premises  $A_1, \dots, A_n$
- **conclusion**  $B$

## Natural Deduction

$$\bullet \frac{A_1 \quad \dots \quad A_n}{B} \langle name \rangle$$

- premises  $A_1, \dots, A_n$
- conclusion  $B$

## In Isabelle

**theorem**  $\langle name \rangle$ : **assumes**  $A_1$  **and**  $\dots$  **and**  $A_n$  **shows**  $B$

resulting in

$$[\![?A_1; \dots; ?A_n]\!] \implies ?B$$

## Example – Conjunction Rules and an Easy Proof

|                                                     |   |                         |                 |
|-----------------------------------------------------|---|-------------------------|-----------------|
| $\frac{\phi \quad \psi}{\phi \wedge \psi} \wedge i$ | 1 | $p \wedge q$            | premise         |
|                                                     | 2 | $r$                     | premise         |
| $\frac{\phi \wedge \psi}{\phi} \wedge e_1$          | 3 | $q$                     | $\wedge e_2$ 1  |
|                                                     | 4 | $p$                     | $\wedge e_1$ 1  |
|                                                     | 5 | $q \wedge r$            | $\wedge i$ 3, 2 |
| $\frac{\phi \wedge \psi}{\psi} \wedge e_2$          | 6 | $p \wedge (q \wedge r)$ | $\wedge i$ 4, 5 |

## Example – Conjunction Rules and an Easy Proof

$$\frac{\phi \quad \psi}{\phi \wedge \psi} \wedge i$$

$$\frac{\phi \wedge \psi}{\phi} \wedge e_1$$

$$\frac{\phi \wedge \psi}{\psi} \wedge e_2$$

|   |                         |                 |
|---|-------------------------|-----------------|
| 1 | $p \wedge q$            | premise         |
| 2 | $r$                     | premise         |
| 3 | $q$                     | $\wedge e_2$ 1  |
| 4 | $p$                     | $\wedge e_1$ 1  |
| 5 | $q \wedge r$            | $\wedge i$ 3, 2 |
| 6 | $p \wedge (q \wedge r)$ | $\wedge i$ 4, 5 |

## The Same Rules in Isabelle

conjI:  $\llbracket ?P ; ?Q \rrbracket \implies ?P \wedge ?Q$

conjunct1:  $?P \wedge ?Q \implies ?P$

conjunct2:  $?P \wedge ?Q \implies ?Q$

## The Method rule

- synopsis: rule *name*

## The Method rule

- synopsis: `rule <name>`
- applies to a goal provided it is the instance of the conclusion of `<name>`

## The Method rule

- synopsis: `rule <name>`
- applies to a goal provided it is the instance of the conclusion of  $\langle name \rangle$
- solves the goal if there are current facts that are instances of the premises of  $\langle name \rangle$

## The Method rule

- synopsis: `rule <name>`
- applies to a goal provided it is the instance of the conclusion of  $\langle \text{name} \rangle$
- solves the goal if there are current facts that are instances of the premises of  $\langle \text{name} \rangle$
- the number and order of those facts has to be exactly the same as for the premises of  $\langle \text{name} \rangle$

## The Above Proof in Isabelle

lemma

```
assumes pq: "p ∧ q" and "r"  
shows "p ∧ (q ∧ r)" (is ?goal)
```

proof -

```
from pq have "q" by (rule conjunct2)  
from pq have "p" by (rule conjunct1)
```

moreover

```
from `q` and `r` have "q ∧ r" by (rule conjI)
```

ultimately

```
show ?goal by (rule conjI)
```

qed

## Some Notes

- referring to facts is possible via name (if one was defined),  
e.g., `from` pq ...

## Some Notes

- referring to facts is possible via name (if one was defined),  
e.g., `from pq ...`
- or by explicitly writing the fact between backticks (this is then  
called a literal fact), e.g., `from `q` ...`

## Some Notes

- referring to facts is possible via name (if one was defined),  
e.g., `from pq ...`
- or by explicitly writing the fact between backticks (this is then  
called a **literal fact**), e.g., `from `q` ...`

## Some Notes

- referring to facts is possible via name (if one was defined),  
e.g., `from pq ...`
- or by explicitly writing the fact between backticks (this is then called a literal fact), e.g., `from `q` ...`
- for every term (between double quotes) an abbreviation can be introduced using an is-pattern, e.g.,  
`"p ∧ (q ∧ r)" (is ?goal)`

## Some Notes

- referring to facts is possible via name (if one was defined),  
e.g., `from pq ...`
- or by explicitly writing the fact between backticks (this is then called a literal fact), e.g., `from `q` ...`
- for every term (between double quotes) an abbreviation can be introduced using an is-pattern, e.g.,  
`"p ∧ (q ∧ r)" (is ?goal)`
- `moreover` is used to collect a list of facts

## Some Notes

- referring to facts is possible via name (if one was defined),  
e.g., `from pq ...`
- or by explicitly writing the fact between backticks (this is then called a literal fact), e.g., `from `q` ...`
- for every term (between double quotes) an abbreviation can be introduced using an is-pattern, e.g.,  
`"p ∧ (q ∧ r)" (is ?goal)`
- `moreover` is used to collect a list of facts
- afterwards the list is used by `ultimately`

# Propositional Logic

## Idea of Introduction/Elimination Rules

For every logical connective there are several rules for introducing it and for eliminating it.

## Idea of Introduction/Elimination Rules

For every logical connective there are several rules for introducing it and for eliminating it.

## Natural Deduction – Propositional Logic

$$\frac{\phi \quad \psi}{\phi \wedge \psi} (\wedge i)$$

$$\frac{\phi_i}{\phi_1 \vee \phi_2} (\vee i_i)$$

$$\frac{\phi \quad \vdots \quad \psi}{\phi \rightarrow \psi} (\rightarrow i)$$

$$\frac{\phi \quad \vdots \quad \perp}{\neg \phi} (\neg i)$$

$$\frac{\phi_1 \wedge \phi_2}{\phi_i} (\wedge e_i)$$

$$\phi \vee \psi$$

$$\frac{\phi \quad \vdots \quad \chi}{\chi} (\wedge e)$$

$$\frac{\psi \quad \vdots \quad \chi}{\chi} (\vee e)$$

$$\frac{\phi \rightarrow \psi \quad \phi}{\psi} (\rightarrow e) \quad \frac{\phi \quad \neg \phi}{\psi} (\neg e)$$

## Derived Rule – Double Negation Introduction

$$\frac{\phi}{\neg\neg\phi} (\neg\neg i)$$

## Derived Rule – Double Negation Introduction

$$\frac{\phi}{\neg\neg\phi} (\neg\neg i)$$

### Proof

|   |                |               |
|---|----------------|---------------|
| 1 | $\phi$         | premise       |
| 2 | $\neg\phi$     | assumption    |
| 3 | $\perp$        | $\neg e$ 2, 1 |
| 4 | $\neg\neg\phi$ | $\neg i$ 2–3  |

## Derived Rule – Law of the Excluded Middle

$$\frac{}{\phi \vee \neg\phi} \text{ (lem)}$$

## Derived Rule – Law of the Excluded Middle

$$\frac{}{\phi \vee \neg\phi} \text{ (lem)}$$

### Proof

### Exercise

## Derived Rule – Double Negation Elimination

$$\frac{\neg\neg\phi}{\phi} (\neg\neg\text{e})$$

## Derived Rule – Double Negation Elimination

$$\frac{\neg\neg\phi}{\phi} (\neg\neg\text{e})$$

### Proof

|   |                      |                           |
|---|----------------------|---------------------------|
| 1 | $\neg\neg\phi$       | premise                   |
| 2 | $\phi \vee \neg\phi$ | lem                       |
| 3 | $\phi$               | assumption                |
| 4 | $\neg\phi$           | assumption                |
| 5 | $\phi$               | $\neg\text{e } 1, 4$      |
| 6 | $\phi$               | $\vee\text{e } 2, 3, 4-5$ |

## Derived Rule – Proof by Contradiction

$$\frac{\neg\phi \quad \vdots \quad \perp}{\phi} \text{ (pbc)}$$

### Proof

|         |                |                      |
|---------|----------------|----------------------|
| 1       | $\neg\phi$     | assumption           |
| :       | $\vdots$       |                      |
| $n$     | $\perp$        |                      |
| $n + 1$ | $\neg\neg\phi$ | $\neg i \ 1-n$       |
| $n + 2$ | $\phi$         | $\neg\neg e \ n + 1$ |

## A Word on Destruction Rules – Loosing Information

## A Word on Destruction Rules – Loosing Information

- usually rules like  $\wedge e_1$  are known as elimination rules

## A Word on Destruction Rules – Loosing Information

- usually rules like  $\wedge e_1$  are known as elimination rules
- in Isabelle they are called **destruction** rules

## A Word on Destruction Rules – Loosing Information

- usually rules like  $\wedge e_1$  are known as elimination rules
- in Isabelle they are called destruction rules
- using such rules **destroys** information

## A Word on Destruction Rules – Loosing Information

- usually rules like  $\wedge e_1$  are known as elimination rules
- in Isabelle they are called destruction rules
- using such rules destroys information
- thus it can turn a goal **unprovable**

## A Word on Destruction Rules – Loosing Information

- usually rules like  $\wedge e_1$  are known as elimination rules
- in Isabelle they are called destruction rules
- using such rules destroys information
- thus it can turn a goal unprovable
- use destruction rules with care

## A Word on Destruction Rules – Loosing Information

- usually rules like  $\wedge e_1$  are known as elimination rules
- in Isabelle they are called destruction rules
- using such rules destroys information
- thus it can turn a goal unprovable
- use destruction rules with care

### Example – Conjunction Elimination

$$\frac{\phi \wedge \psi}{\chi} (\wedge e)$$

$\phi$   
 $\psi$   
 $\vdots$   
 $\chi$

## Raw Proof Blocks

- enclose between { and }

## Raw Proof Blocks

- enclose between { and }
- does not work on current goal but introduces new facts

## Raw Proof Blocks

- enclose between `{` and `}`
- does not work on current goal but introduces new facts
- any '`assume`'s are premises of the resulting fact

## Raw Proof Blocks

- enclose between `{` and `}`
- does not work on current goal but introduces new facts
- any '`assume`'s are premises of the resulting fact
- the last '`have`' is the conclusion of the resulting fact

## Raw Proof Blocks

- enclose between `{` and `}`
- does not work on current goal but introduces new facts
- any '`assume`'s are premises of the resulting fact
- the last '`have`' is the conclusion of the resulting fact
- like boxes in the 'pen 'n' paper' natural deduction rules

## Predicate Logic

## Universal Quantification

$$\frac{x_0 \quad \vdots \quad \phi(x_0)}{\forall x. \phi(x)} \text{ (}\forall\text{i)}$$
$$\frac{\forall x. \phi(x)}{\phi(t)} \text{ (}\forall\text{e)}$$

## Universal Quantification

$$\frac{x_0 \quad \vdots \quad \phi(x_0)}{\forall x. \phi(x)} \text{ (}\forall\text{i)}$$
$$\frac{\forall x. \phi(x)}{\phi(t)} \text{ (}\forall\text{e)}$$

## Isabelle Idiom for Meta Universal Quantification

```
fix x0 ... show "?P(x0)" ⟨proof⟩
```

results in

$$\bigwedge x. ?P(x)$$

## Existential Quantification

$$\frac{\frac{\phi(t)}{\exists x. \phi(x)} \text{ (}\exists\text{i)} \quad \exists x. \phi(x)}{\psi} \text{ (}\exists\text{e)}$$

$x_0 \ \phi(x_0)$   
⋮  
 $\psi$

## Existential Quantification

$$\frac{\phi(t)}{\exists x. \phi(x)} \text{ (}\exists\text{i)}$$

$$\exists x. \phi(x)$$

$$\frac{x_0 \ \phi(x_0) \quad \vdots \quad \psi}{\psi} \text{ (}\exists\text{e)}$$

## Isabelle Idiom for $\exists$ -Elimination

" $\exists x. ?P(x)$ " then obtain  $y$  where " $?P(y)$ "  $\langle proof \rangle$

results in

$?P(y)$

## An Example Proof

lemma

assumes ex: " $\exists x. \forall y. P x y$ "

shows " $\forall y. \exists x. P x y$ "

proof

fix y

from ex obtain x where " $\forall y. P x y$ " by (rule exE)

hence " $P x y$ " by (rule spec)

thus " $\exists x. P x y$ " by (rule exI)

qed

## Exercises

<http://isabelle.in.tum.de/exercises/logic/elimination/ex.pdf>

<http://isabelle.in.tum.de/exercises/logic/propositional/ex.pdf>

<http://isabelle.in.tum.de/exercises/logic/predicate/ex.pdf>