
Experiments in Verification
SS 2011

Christian Sternagel

Computational Logic
Institute of Computer Science

University of Innsbruck

April 1, 2011

http://cl-informatik.uibk.ac.at


Today’s Topics

� Natural Deduction

� Propositional Logic

� Predicate Logic



Natural Deduction



Isabelle’s Meta-Logic

� description: minimal intuitionistic higher-order logic

� connectives

�

∧
: universal quantifier

� =⇒: implication
� ≡: equality

Example

∧
x y . x ≡ y =⇒ y ≡ x



Isabelle’s Meta-Logic

� description: minimal intuitionistic higher-order logic

� connectives

�

∧
: universal quantifier

� =⇒: implication
� ≡: equality

Example

∧
x y . x ≡ y =⇒ y ≡ x



Isabelle’s Meta-Logic

� description: minimal intuitionistic higher-order logic

� connectives
�

∧
: universal quantifier

� =⇒: implication
� ≡: equality

Example

∧
x y . x ≡ y =⇒ y ≡ x



Isabelle’s Meta-Logic

� description: minimal intuitionistic higher-order logic

� connectives
�

∧
: universal quantifier

� =⇒: implication

� ≡: equality

Example

∧
x y . x ≡ y =⇒ y ≡ x



Isabelle’s Meta-Logic

� description: minimal intuitionistic higher-order logic

� connectives
�

∧
: universal quantifier

� =⇒: implication
� ≡: equality

Example

∧
x y . x ≡ y =⇒ y ≡ x



Isabelle’s Meta-Logic

� description: minimal intuitionistic higher-order logic

� connectives
�

∧
: universal quantifier

� =⇒: implication
� ≡: equality

Example

∧
x y . x ≡ y =⇒ y ≡ x



Schematic Variables

free variables and (meta) universally quantified variables (at the
outermost level) are both turned into schematic variables after a
proof

Meta-Equality

in almost any case, equality (=) may be used instead of
meta-equality (≡)

Meta-Implication

� nested implications associate to the right and

� may be abbreviated by [[A1; . . . ;An]] =⇒ B instead of
A1 =⇒ . . . =⇒ An =⇒ B

� assumes A shows B is turned into A =⇒ B after a proof



Schematic Variables

free variables and (meta) universally quantified variables (at the
outermost level) are both turned into schematic variables after a
proof

Meta-Equality

in almost any case, equality (=) may be used instead of
meta-equality (≡)

Meta-Implication

� nested implications associate to the right and

� may be abbreviated by [[A1; . . . ;An]] =⇒ B instead of
A1 =⇒ . . . =⇒ An =⇒ B

� assumes A shows B is turned into A =⇒ B after a proof



Schematic Variables

free variables and (meta) universally quantified variables (at the
outermost level) are both turned into schematic variables after a
proof

Meta-Equality

in almost any case, equality (=) may be used instead of
meta-equality (≡)

Meta-Implication

� nested implications associate to the right and

� may be abbreviated by [[A1; . . . ;An]] =⇒ B instead of
A1 =⇒ . . . =⇒ An =⇒ B

� assumes A shows B is turned into A =⇒ B after a proof



Natural Deduction

�

A1 . . . An 〈name〉
B

� premises A1, . . . ,An

� conclusion B

In Isabelle

theorem 〈name〉: assumes A1 and . . . and An shows B

resulting in
[[?A1; . . . ;?An]] =⇒ ?B



Natural Deduction

�

A1 . . . An 〈name〉
B

� premises A1, . . . ,An

� conclusion B

In Isabelle

theorem 〈name〉: assumes A1 and . . . and An shows B

resulting in
[[?A1; . . . ;?An]] =⇒ ?B



Natural Deduction

�

A1 . . . An 〈name〉
B

� premises A1, . . . ,An

� conclusion B

In Isabelle

theorem 〈name〉: assumes A1 and . . . and An shows B

resulting in
[[?A1; . . . ;?An]] =⇒ ?B



Natural Deduction

�

A1 . . . An 〈name〉
B

� premises A1, . . . ,An

� conclusion B

In Isabelle

theorem 〈name〉: assumes A1 and . . . and An shows B

resulting in
[[?A1; . . . ;?An]] =⇒ ?B



Example – Conjunction Rules and an Easy Proof

φ ψ
∧i

φ ∧ ψ

φ ∧ ψ
∧e1

φ

φ ∧ ψ
∧e2

ψ

1 p ∧ q premise
2 r premise
3 q ∧e2 1
4 p ∧e1 1
5 q ∧ r ∧i 3, 2
6 p ∧ (q ∧ r) ∧i 4, 5

The Same Rules in Isabelle

conjI: [[?P;?Q]] =⇒ ?P ∧ ?Q conjunct1: ?P ∧ ?Q =⇒ ?P
conjunct2: ?P ∧ ?Q =⇒ ?Q



Example – Conjunction Rules and an Easy Proof

φ ψ
∧i

φ ∧ ψ

φ ∧ ψ
∧e1

φ

φ ∧ ψ
∧e2

ψ

1 p ∧ q premise
2 r premise
3 q ∧e2 1
4 p ∧e1 1
5 q ∧ r ∧i 3, 2
6 p ∧ (q ∧ r) ∧i 4, 5

The Same Rules in Isabelle

conjI: [[?P;?Q]] =⇒ ?P ∧ ?Q conjunct1: ?P ∧ ?Q =⇒ ?P
conjunct2: ?P ∧ ?Q =⇒ ?Q



The Method rule

� synopsis: rule 〈name〉

� applies to a goal provided it is the instance of the conclusion
of 〈name〉

� solves the goal if there are current facts that are instances of
the premises of 〈name〉

� the number and order of those facts has to be exactly the
same as for the premises of 〈name〉



The Method rule

� synopsis: rule 〈name〉
� applies to a goal provided it is the instance of the conclusion

of 〈name〉

� solves the goal if there are current facts that are instances of
the premises of 〈name〉

� the number and order of those facts has to be exactly the
same as for the premises of 〈name〉



The Method rule

� synopsis: rule 〈name〉
� applies to a goal provided it is the instance of the conclusion

of 〈name〉
� solves the goal if there are current facts that are instances of

the premises of 〈name〉

� the number and order of those facts has to be exactly the
same as for the premises of 〈name〉



The Method rule

� synopsis: rule 〈name〉
� applies to a goal provided it is the instance of the conclusion

of 〈name〉
� solves the goal if there are current facts that are instances of

the premises of 〈name〉
� the number and order of those facts has to be exactly the

same as for the premises of 〈name〉



The Above Proof in Isabelle

lemma

assumes pq: "p ∧ q" and "r"
shows "p ∧ (q ∧ r)" (is ?goal)

proof -
from pq have "q" by (rule conjunct2)
from pq have "p" by (rule conjunct1)
moreover

from `q` and `r` have "q ∧ r" by (rule conjI)
ultimately

show ?goal by (rule conjI)
qed



Some Notes

� referring to facts is possible via name (if one was defined),
e.g., from pq . . .

� or by explicitly writing the fact between backticks (this is then
called a literal fact), e.g., from `q` . . .

� for every term (between double quotes) an abbreviation can
be introduced using an is-pattern, e.g.,
"p ∧ (q ∧ r)" (is ?goal)

� moreover is used to collect a list of facts

� afterwards the list is used by ultimately



Some Notes

� referring to facts is possible via name (if one was defined),
e.g., from pq . . .

� or by explicitly writing the fact between backticks (this is then
called a literal fact), e.g., from `q` . . .

� for every term (between double quotes) an abbreviation can
be introduced using an is-pattern, e.g.,
"p ∧ (q ∧ r)" (is ?goal)

� moreover is used to collect a list of facts

� afterwards the list is used by ultimately



Some Notes

� referring to facts is possible via name (if one was defined),
e.g., from pq . . .

� or by explicitly writing the fact between backticks (this is then
called a literal fact), e.g., from `q` . . .

� for every term (between double quotes) an abbreviation can
be introduced using an is-pattern, e.g.,
"p ∧ (q ∧ r)" (is ?goal)

� moreover is used to collect a list of facts

� afterwards the list is used by ultimately



Some Notes

� referring to facts is possible via name (if one was defined),
e.g., from pq . . .

� or by explicitly writing the fact between backticks (this is then
called a literal fact), e.g., from `q` . . .

� for every term (between double quotes) an abbreviation can
be introduced using an is-pattern, e.g.,
"p ∧ (q ∧ r)" (is ?goal)

� moreover is used to collect a list of facts

� afterwards the list is used by ultimately



Some Notes

� referring to facts is possible via name (if one was defined),
e.g., from pq . . .

� or by explicitly writing the fact between backticks (this is then
called a literal fact), e.g., from `q` . . .

� for every term (between double quotes) an abbreviation can
be introduced using an is-pattern, e.g.,
"p ∧ (q ∧ r)" (is ?goal)

� moreover is used to collect a list of facts

� afterwards the list is used by ultimately



Some Notes

� referring to facts is possible via name (if one was defined),
e.g., from pq . . .

� or by explicitly writing the fact between backticks (this is then
called a literal fact), e.g., from `q` . . .

� for every term (between double quotes) an abbreviation can
be introduced using an is-pattern, e.g.,
"p ∧ (q ∧ r)" (is ?goal)

� moreover is used to collect a list of facts

� afterwards the list is used by ultimately



Propositional Logic



Idea of Introduction/Elimination Rules

For every logical connective there are several rules for introducing
it and for eliminating it.

Natural Deduction – Propositional Logic

φ ψ
(∧i)

φ ∧ ψ
φi

(∨ii )
φ1 ∨ φ2

φ
...
ψ

(→i)
φ→ ψ

φ
...
⊥

(¬i)
¬φ

φ1 ∧ φ2
(∧ei )

φi φ ∨ ψ

φ
...
χ

ψ
...
χ

(∨e)χ

φ→ ψ φ
(→e)

ψ

¬φ φ
(¬e)

ψ



Idea of Introduction/Elimination Rules

For every logical connective there are several rules for introducing
it and for eliminating it.

Natural Deduction – Propositional Logic

φ ψ
(∧i)

φ ∧ ψ
φi

(∨ii )
φ1 ∨ φ2

φ
...
ψ

(→i)
φ→ ψ

φ
...
⊥

(¬i)
¬φ

φ1 ∧ φ2
(∧ei )

φi φ ∨ ψ

φ
...
χ

ψ
...
χ

(∨e)χ

φ→ ψ φ
(→e)

ψ

¬φ φ
(¬e)

ψ



Derived Rule – Double Negation Introduction

φ
(¬¬i)

¬¬φ

Proof

1 φ premise
2 ¬φ assumption
3 ⊥ ¬e 2, 1
4 ¬¬φ ¬i 2–3



Derived Rule – Double Negation Introduction

φ
(¬¬i)

¬¬φ

Proof

1 φ premise
2 ¬φ assumption
3 ⊥ ¬e 2, 1
4 ¬¬φ ¬i 2–3



Derived Rule – Law of the Excluded Middle

(lem)
φ ∨ ¬φ

Proof

Exercise



Derived Rule – Law of the Excluded Middle

(lem)
φ ∨ ¬φ

Proof

Exercise



Derived Rule – Double Negation Elimination

¬¬φ
(¬¬e)

φ

Proof

1 ¬¬φ premise
2 φ ∨ ¬φ lem
3 φ assumption

4 ¬φ assumption
5 φ ¬e 1, 4
6 φ ∨e 2, 3, 4–5



Derived Rule – Double Negation Elimination

¬¬φ
(¬¬e)

φ

Proof

1 ¬¬φ premise
2 φ ∨ ¬φ lem
3 φ assumption

4 ¬φ assumption
5 φ ¬e 1, 4
6 φ ∨e 2, 3, 4–5



Derived Rule – Proof by Contradiction

¬φ
...
⊥

(pbc)
φ

Proof
1 ¬φ assumption
...

...
n ⊥

n + 1 ¬¬φ ¬i 1–n
n + 2 φ ¬¬e n + 1



A Word on Destruction Rules – Loosing Information

� usually rules like ∧e1 are known as elimination rules

� in Isabelle they are called destruction rules

� using such rules destroys information

� thus it can turn a goal unprovable

� use destruction rules with care

Example – Conjunction Elimination

φ ∧ ψ

φ
ψ
...
χ

(∧e)χ



A Word on Destruction Rules – Loosing Information

� usually rules like ∧e1 are known as elimination rules

� in Isabelle they are called destruction rules

� using such rules destroys information

� thus it can turn a goal unprovable

� use destruction rules with care

Example – Conjunction Elimination

φ ∧ ψ

φ
ψ
...
χ

(∧e)χ



A Word on Destruction Rules – Loosing Information

� usually rules like ∧e1 are known as elimination rules

� in Isabelle they are called destruction rules

� using such rules destroys information

� thus it can turn a goal unprovable

� use destruction rules with care

Example – Conjunction Elimination

φ ∧ ψ

φ
ψ
...
χ

(∧e)χ



A Word on Destruction Rules – Loosing Information

� usually rules like ∧e1 are known as elimination rules

� in Isabelle they are called destruction rules

� using such rules destroys information

� thus it can turn a goal unprovable

� use destruction rules with care

Example – Conjunction Elimination

φ ∧ ψ

φ
ψ
...
χ

(∧e)χ



A Word on Destruction Rules – Loosing Information

� usually rules like ∧e1 are known as elimination rules

� in Isabelle they are called destruction rules

� using such rules destroys information

� thus it can turn a goal unprovable

� use destruction rules with care

Example – Conjunction Elimination

φ ∧ ψ

φ
ψ
...
χ

(∧e)χ



A Word on Destruction Rules – Loosing Information

� usually rules like ∧e1 are known as elimination rules

� in Isabelle they are called destruction rules

� using such rules destroys information

� thus it can turn a goal unprovable

� use destruction rules with care

Example – Conjunction Elimination

φ ∧ ψ

φ
ψ
...
χ

(∧e)χ



A Word on Destruction Rules – Loosing Information

� usually rules like ∧e1 are known as elimination rules

� in Isabelle they are called destruction rules

� using such rules destroys information

� thus it can turn a goal unprovable

� use destruction rules with care

Example – Conjunction Elimination

φ ∧ ψ

φ
ψ
...
χ

(∧e)χ



Raw Proof Blocks

� enclose between { and }

� does not work on current goal but introduces new facts

� any ‘assume’s are premises of the resulting fact

� the last ‘have’ is the conclusion of the resulting fact

� like boxes in the ‘pen ’n’ paper’ natural deduction rules



Raw Proof Blocks

� enclose between { and }

� does not work on current goal but introduces new facts

� any ‘assume’s are premises of the resulting fact

� the last ‘have’ is the conclusion of the resulting fact

� like boxes in the ‘pen ’n’ paper’ natural deduction rules



Raw Proof Blocks

� enclose between { and }

� does not work on current goal but introduces new facts

� any ‘assume’s are premises of the resulting fact

� the last ‘have’ is the conclusion of the resulting fact

� like boxes in the ‘pen ’n’ paper’ natural deduction rules



Raw Proof Blocks

� enclose between { and }

� does not work on current goal but introduces new facts

� any ‘assume’s are premises of the resulting fact

� the last ‘have’ is the conclusion of the resulting fact

� like boxes in the ‘pen ’n’ paper’ natural deduction rules



Raw Proof Blocks

� enclose between { and }

� does not work on current goal but introduces new facts

� any ‘assume’s are premises of the resulting fact

� the last ‘have’ is the conclusion of the resulting fact

� like boxes in the ‘pen ’n’ paper’ natural deduction rules



Predicate Logic



Universal Quantification

x0
...

φ(x0)
(∀i)

∀x . φ(x)

∀x . φ(x)
(∀e)

φ(t)

Isabelle Idiom for Meta Universal Quantification

fix x0 . . . show "?P(x0)" 〈proof 〉

results in ∧
x . ?P(x)



Universal Quantification

x0
...

φ(x0)
(∀i)

∀x . φ(x)

∀x . φ(x)
(∀e)

φ(t)

Isabelle Idiom for Meta Universal Quantification

fix x0 . . . show "?P(x0)" 〈proof 〉

results in ∧
x . ?P(x)



Existential Quantification

φ(t)
(∃i)

∃x . φ(x) ∃x . φ(x)

x0 φ(x0)
...
ψ

(∃e)
ψ

Isabelle Idiom for ∃-Elimination

"∃x . ?P(x)" then obtain y where "?P(y)" 〈proof 〉

results in
?P(y)



Existential Quantification

φ(t)
(∃i)

∃x . φ(x) ∃x . φ(x)

x0 φ(x0)
...
ψ

(∃e)
ψ

Isabelle Idiom for ∃-Elimination

"∃x . ?P(x)" then obtain y where "?P(y)" 〈proof 〉

results in
?P(y)



An Example Proof

lemma

assumes ex: "∃x. ∀y. P x y"
shows "∀y. ∃x. P x y"

proof

fix y
from ex obtain x where "∀y. P x y" by (rule exE)
hence "P x y" by (rule spec)
thus "∃x. P x y" by (rule exI)

qed



Exercises
http://isabelle.in.tum.de/exercises/logic/elimination/ex.pdf
http://isabelle.in.tum.de/exercises/logic/propositional/ex.pdf
http://isabelle.in.tum.de/exercises/logic/predicate/ex.pdf

http://isabelle.in.tum.de/exercises/logic/elimination/ex.pdf
http://isabelle.in.tum.de/exercises/logic/propositional/ex.pdf
http://isabelle.in.tum.de/exercises/logic/predicate/ex.pdf

