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Today's Topics

e Natural Deduction
e Propositional Logic

e Predicate Logic



Natural Deduction
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free variables and (meta) universally quantified variables (at the
outermost level) are both turned into schematic variables after a

proof

Meta-Equality
in almost any case, equality (=) may be used instead of
meta-equality (=)

Meta-Implication

e nested implications associate to the right and

e may be abbreviated by [A;1; ... ;A,] = B instead of
Al— ...— A, — B

e assumes A shows B is turned into A = B after a proof
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Natural Deduction

. A e An (name)

B
e premises A1, ..., A,

e conclusion B
In Isabelle

theorem (name): assumes A; and ... and A, shows B

resulting in
[?A1;...;7A] = 7B



Example — Conjunction Rules and an Easy Proof
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Example — Conjunction Rules and an Easy Proof

o v . .
dAY ! 1 PAQ premise
2 r premise
dNY nes 3 q Nep 1
10} 4 p Ner 1
5 qgATr Ai 3,2
¢/;¢ nes 6 pA(GAT) Ai4'5

The Same Rules in Isabelle

conjI: [?P;?7Q] = ?PA?Q conjunctl: ?PAN7Q = 7P
conjunct2: 7P A?TQ = 7Q
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The Method rule

e synopsis: rule (name)
e applies to a goal provided it is the instance of the conclusion
of (name)

e solves the goal if there are current facts that are instances of
the premises of (name)

e the number and order of those facts has to be exactly the
same as for the premises of (name)



The Above Proof in Isabelle

lemma

assumes pq: "p A q" and "r"

shows "p A (g A )" (is 7goal)
proof -

from pq have "q" by (rule conjunct2)

from pq have "p" by (rule conjunctl)
moreover

from “q° and “r’ have "q A r" by (rule conjI)
ultimately
show ?goal by (rule conjI)
qed
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referring to facts is possible via name (if one was defined),
e.g., from pq ...

or by explicitly writing the fact between backticks (this is then
called a literal fact), e.g., from ~q~ ...

for every term (between double quotes) an abbreviation can
be introduced using an is-pattern, e.g.,

"pA(gATr)" (is 7goal)

moreover is used to collect a list of facts

afterwards the list is used by ultimately
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Idea of Introduction/Elimination Rules

For every logical connective there are several rules for introducing
it and for eliminating it.

Natural Deduction — Propositional Logic
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Derived Rule — Double Negation Introduction

¢

/1

(=-i)



Derived Rule — Double Negation Introduction

¢

/1

(=-i)

1 10) premise

2 ¢ assumption
3 L -e2,1

4 -n¢ i 2-3



Derived Rule — Law of the Excluded Middle
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Derived Rule — Law of the Excluded Middle
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Derived Rule — Double Negation Elimination
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Derived Rule — Double Negation Elimination
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Derived Rule — Proof by Contradiction

¢
3 (pbc)
1 ¢ assumption

n 1
n+1 -=¢p —il-n
n+2 10) ——en+1




A Word on Destruction Rules — Loosing Information



A Word on Destruction Rules — Loosing Information

e usually rules like Ae; are known as elimination rules



A Word on Destruction Rules — Loosing Information

e usually rules like Ae; are known as elimination rules

e in Isabelle they are called destruction rules



A Word on Destruction Rules — Loosing Information

e usually rules like Ae; are known as elimination rules
e in Isabelle they are called destruction rules

e using such rules destroys information



A Word on Destruction Rules — Loosing Information

e usually rules like Ae; are known as elimination rules
e in Isabelle they are called destruction rules
e using such rules destroys information

e thus it can turn a goal unprovable



A Word on Destruction Rules — Loosing Information

e usually rules like Ae; are known as elimination rules

in Isabelle they are called destruction rules

e using such rules destroys information

thus it can turn a goal unprovable

use destruction rules with care



A Word on Destruction Rules — Loosing Information

e usually rules like Ae; are known as elimination rules
e in Isabelle they are called destruction rules

e using such rules destroys information

e thus it can turn a goal unprovable

e use destruction rules with care

Example — Conjunction Elimination
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Raw Proof Blocks

e enclose between { and }
e does not work on current goal but introduces new facts
e any ‘assume’s are premises of the resulting fact

the last 'have’ is the conclusion of the resulting fact

like boxes in the ‘pen 'n’ paper’ natural deduction rules



Predicate Logic



Universal Quantification
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Universal Quantification

X0

: Vx. ¢(x)
?(x0) o(t)

5 )

Vx. ¢(x)

Isabelle Idiom for Meta Universal Quantification

fix xg ... show "7P(xp)" (proof)

(Ve)

results in

/\x. 7P(x)



Existential Quantification
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Existential Quantification

xo ¢(x0)

(3)

o(t) :
(x) Ix. o(x) )

dx. ¢

Isabelle Idiom for 3-Elimination

(3e)

"Jx. 7P(x)" then obtain y where "?P(y)" (proof)

results in
7P(y)



An Example Proof

lemma
assumes ex: "Jx. Vy. P x y"
shows "Vy. dx. P x y"

proof
fix y

from ex obtain x where "Vy. P x y" by (rule exE)
hence "P x y" by (rule spec)
thus "Jx. P x y" by (rule exI)

qed




Exercises

http://isabelle.in.tum.de/exercises/logic/elimination/ex.pdf
http://isabelle.in.tum.de/exercises/logic/propositional/ex.pdf
http://isabelle.in.tum.de/exercises/logic/predicate/ex.pdf
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