
Experiments in Verification
SS 2011

Christian Sternagel

Computational Logic
Institute of Computer Science

University of Innsbruck

April 15, 2011

http://cl-informatik.uibk.ac.at

Today’s Topics

� Sets and Relations

� Inductively Defined Sets

� Evaluation

� Projects

Sets and Relations

Sets in Isabelle

� type

(* characteristic function. *)
type_synonym 'a set = "('a ⇒ bool)"

� x is member of set S if characteristic function returns True

� lemma mem_def: "x ∈ S ≡ S x"

Basic Operations on Sets – Intersection

� notation: A ∩ B (ASCII: A Int B)

� IntI: [[c ∈ A;c ∈ B]] =⇒ c ∈ A ∩ B

� IntD1: c ∈ A ∩ B =⇒ c ∈ A

� IntD2: c ∈ A ∩ B =⇒ c ∈ B

Basic Operations on Sets – Union

� notation: A ∪ B (ASCII: A Un B)

� UnI1: c ∈ A =⇒ c ∈ A ∪ B

� UnI2: c ∈ B =⇒ c ∈ A ∪ B

� UnE: [[c ∈ A ∪ B;c ∈ A =⇒ P;c ∈ B =⇒ P]] =⇒ P

Basic Operations on Sets – Intersection

� notation: A ∩ B (ASCII: A Int B)

� IntI: [[c ∈ A;c ∈ B]] =⇒ c ∈ A ∩ B

� IntD1: c ∈ A ∩ B =⇒ c ∈ A

� IntD2: c ∈ A ∩ B =⇒ c ∈ B

Basic Operations on Sets – Union

� notation: A ∪ B (ASCII: A Un B)

� UnI1: c ∈ A =⇒ c ∈ A ∪ B

� UnI2: c ∈ B =⇒ c ∈ A ∪ B

� UnE: [[c ∈ A ∪ B;c ∈ A =⇒ P;c ∈ B =⇒ P]] =⇒ P

Basic Operations on Sets – Intersection

� notation: A ∩ B (ASCII: A Int B)

� IntI: [[c ∈ A;c ∈ B]] =⇒ c ∈ A ∩ B

� IntD1: c ∈ A ∩ B =⇒ c ∈ A

� IntD2: c ∈ A ∩ B =⇒ c ∈ B

Basic Operations on Sets – Union

� notation: A ∪ B (ASCII: A Un B)

� UnI1: c ∈ A =⇒ c ∈ A ∪ B

� UnI2: c ∈ B =⇒ c ∈ A ∪ B

� UnE: [[c ∈ A ∪ B;c ∈ A =⇒ P;c ∈ B =⇒ P]] =⇒ P

Basic Operations on Sets – Intersection

� notation: A ∩ B (ASCII: A Int B)

� IntI: [[c ∈ A;c ∈ B]] =⇒ c ∈ A ∩ B

� IntD1: c ∈ A ∩ B =⇒ c ∈ A

� IntD2: c ∈ A ∩ B =⇒ c ∈ B

Basic Operations on Sets – Union

� notation: A ∪ B (ASCII: A Un B)

� UnI1: c ∈ A =⇒ c ∈ A ∪ B

� UnI2: c ∈ B =⇒ c ∈ A ∪ B

� UnE: [[c ∈ A ∪ B;c ∈ A =⇒ P;c ∈ B =⇒ P]] =⇒ P

Basic Operations on Sets – Intersection

� notation: A ∩ B (ASCII: A Int B)

� IntI: [[c ∈ A;c ∈ B]] =⇒ c ∈ A ∩ B

� IntD1: c ∈ A ∩ B =⇒ c ∈ A

� IntD2: c ∈ A ∩ B =⇒ c ∈ B

Basic Operations on Sets – Union

� notation: A ∪ B (ASCII: A Un B)

� UnI1: c ∈ A =⇒ c ∈ A ∪ B

� UnI2: c ∈ B =⇒ c ∈ A ∪ B

� UnE: [[c ∈ A ∪ B;c ∈ A =⇒ P;c ∈ B =⇒ P]] =⇒ P

Basic Operations on Sets – Intersection

� notation: A ∩ B (ASCII: A Int B)

� IntI: [[c ∈ A;c ∈ B]] =⇒ c ∈ A ∩ B

� IntD1: c ∈ A ∩ B =⇒ c ∈ A

� IntD2: c ∈ A ∩ B =⇒ c ∈ B

Basic Operations on Sets – Union

� notation: A ∪ B (ASCII: A Un B)

� UnI1: c ∈ A =⇒ c ∈ A ∪ B

� UnI2: c ∈ B =⇒ c ∈ A ∪ B

� UnE: [[c ∈ A ∪ B;c ∈ A =⇒ P;c ∈ B =⇒ P]] =⇒ P

Basic Operations on Sets – Intersection

� notation: A ∩ B (ASCII: A Int B)

� IntI: [[c ∈ A;c ∈ B]] =⇒ c ∈ A ∩ B

� IntD1: c ∈ A ∩ B =⇒ c ∈ A

� IntD2: c ∈ A ∩ B =⇒ c ∈ B

Basic Operations on Sets – Union

� notation: A ∪ B (ASCII: A Un B)

� UnI1: c ∈ A =⇒ c ∈ A ∪ B

� UnI2: c ∈ B =⇒ c ∈ A ∪ B

� UnE: [[c ∈ A ∪ B;c ∈ A =⇒ P;c ∈ B =⇒ P]] =⇒ P

Basic Operations on Sets – Intersection

� notation: A ∩ B (ASCII: A Int B)

� IntI: [[c ∈ A;c ∈ B]] =⇒ c ∈ A ∩ B

� IntD1: c ∈ A ∩ B =⇒ c ∈ A

� IntD2: c ∈ A ∩ B =⇒ c ∈ B

Basic Operations on Sets – Union

� notation: A ∪ B (ASCII: A Un B)

� UnI1: c ∈ A =⇒ c ∈ A ∪ B

� UnI2: c ∈ B =⇒ c ∈ A ∪ B

� UnE: [[c ∈ A ∪ B;c ∈ A =⇒ P;c ∈ B =⇒ P]] =⇒ P

Basic Operations on Sets – Intersection

� notation: A ∩ B (ASCII: A Int B)

� IntI: [[c ∈ A;c ∈ B]] =⇒ c ∈ A ∩ B

� IntD1: c ∈ A ∩ B =⇒ c ∈ A

� IntD2: c ∈ A ∩ B =⇒ c ∈ B

Basic Operations on Sets – Union

� notation: A ∪ B (ASCII: A Un B)

� UnI1: c ∈ A =⇒ c ∈ A ∪ B

� UnI2: c ∈ B =⇒ c ∈ A ∪ B

� UnE: [[c ∈ A ∪ B;c ∈ A =⇒ P;c ∈ B =⇒ P]] =⇒ P

Basic Operations on Sets – Intersection

� notation: A ∩ B (ASCII: A Int B)

� IntI: [[c ∈ A;c ∈ B]] =⇒ c ∈ A ∩ B

� IntD1: c ∈ A ∩ B =⇒ c ∈ A

� IntD2: c ∈ A ∩ B =⇒ c ∈ B

Basic Operations on Sets – Union

� notation: A ∪ B (ASCII: A Un B)

� UnI1: c ∈ A =⇒ c ∈ A ∪ B

� UnI2: c ∈ B =⇒ c ∈ A ∪ B

� UnE: [[c ∈ A ∪ B;c ∈ A =⇒ P;c ∈ B =⇒ P]] =⇒ P

Basic Operations on Sets – Complement and Difference

� complement: −A

� Compl_iff: (c ∈ −A) = (c /∈ A)

� difference: A− B

Basic Operations on Sets – Subsets

� notation: A ⊆ B (ASCII: A <= B)

� subsetI: (
∧

x . x ∈ A =⇒ x ∈ B) =⇒ A ⊆ B

� equalityI: [[A ⊆ B;B ⊆ A]] =⇒ A = B

Basic Operations on Sets – Complement and Difference

� complement: −A

� Compl_iff: (c ∈ −A) = (c /∈ A)

� difference: A− B

Basic Operations on Sets – Subsets

� notation: A ⊆ B (ASCII: A <= B)

� subsetI: (
∧

x . x ∈ A =⇒ x ∈ B) =⇒ A ⊆ B

� equalityI: [[A ⊆ B;B ⊆ A]] =⇒ A = B

Basic Operations on Sets – Complement and Difference

� complement: −A

� Compl_iff: (c ∈ −A) = (c /∈ A)

� difference: A− B

Basic Operations on Sets – Subsets

� notation: A ⊆ B (ASCII: A <= B)

� subsetI: (
∧

x . x ∈ A =⇒ x ∈ B) =⇒ A ⊆ B

� equalityI: [[A ⊆ B;B ⊆ A]] =⇒ A = B

Basic Operations on Sets – Complement and Difference

� complement: −A

� Compl_iff: (c ∈ −A) = (c /∈ A)

� difference: A− B

Basic Operations on Sets – Subsets

� notation: A ⊆ B (ASCII: A <= B)

� subsetI: (
∧

x . x ∈ A =⇒ x ∈ B) =⇒ A ⊆ B

� equalityI: [[A ⊆ B;B ⊆ A]] =⇒ A = B

Basic Operations on Sets – Complement and Difference

� complement: −A

� Compl_iff: (c ∈ −A) = (c /∈ A)

� difference: A− B

Basic Operations on Sets – Subsets

� notation: A ⊆ B (ASCII: A <= B)

� subsetI: (
∧

x . x ∈ A =⇒ x ∈ B) =⇒ A ⊆ B

� equalityI: [[A ⊆ B;B ⊆ A]] =⇒ A = B

Basic Operations on Sets – Complement and Difference

� complement: −A

� Compl_iff: (c ∈ −A) = (c /∈ A)

� difference: A− B

Basic Operations on Sets – Subsets

� notation: A ⊆ B (ASCII: A <= B)

� subsetI: (
∧

x . x ∈ A =⇒ x ∈ B) =⇒ A ⊆ B

� equalityI: [[A ⊆ B;B ⊆ A]] =⇒ A = B

Basic Operations on Sets – Complement and Difference

� complement: −A

� Compl_iff: (c ∈ −A) = (c /∈ A)

� difference: A− B

Basic Operations on Sets – Subsets

� notation: A ⊆ B (ASCII: A <= B)

� subsetI: (
∧

x . x ∈ A =⇒ x ∈ B) =⇒ A ⊆ B

� equalityI: [[A ⊆ B;B ⊆ A]] =⇒ A = B

Basic Operations on Sets – Complement and Difference

� complement: −A

� Compl_iff: (c ∈ −A) = (c /∈ A)

� difference: A− B

Basic Operations on Sets – Subsets

� notation: A ⊆ B (ASCII: A <= B)

� subsetI: (
∧

x . x ∈ A =⇒ x ∈ B) =⇒ A ⊆ B

� equalityI: [[A ⊆ B;B ⊆ A]] =⇒ A = B

Set Notation

� the empty set: {}

� the universal set: UNIV

� a singleton set: {x}

� insertion (insert_is_Un): insert x A = {x} ∪ A

� finite sets, e.g., {a, b, c , d}

Set Notation

� the empty set: {}

� the universal set: UNIV

� a singleton set: {x}

� insertion (insert_is_Un): insert x A = {x} ∪ A

� finite sets, e.g., {a, b, c , d}

Set Notation

� the empty set: {}

� the universal set: UNIV

� a singleton set: {x}

� insertion (insert_is_Un): insert x A = {x} ∪ A

� finite sets, e.g., {a, b, c , d}

Set Notation

� the empty set: {}

� the universal set: UNIV

� a singleton set: {x}

� insertion (insert_is_Un): insert x A = {x} ∪ A

� finite sets, e.g., {a, b, c , d}

Set Notation

� the empty set: {}

� the universal set: UNIV

� a singleton set: {x}

� insertion (insert_is_Un): insert x A = {x} ∪ A

� finite sets, e.g., {a, b, c , d}

Set Notation

� the empty set: {}

� the universal set: UNIV

� a singleton set: {x}

� insertion (insert_is_Un): insert x A = {x} ∪ A

� finite sets, e.g., {a, b, c , d}

An Example Proof

lemma "A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)"

Proof

Isabelle

An Example Proof

lemma "A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)"

Proof

Isabelle

A Shorter Proof – The blast Method

� applies introduction and elimination rules automatically

� suitable for many goals concerning logical and/or set
operations

lemma "A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)" by blast

Set Comprehension by Example

Mathematics Isabelle

{x | P(x)} {x. P x}

{(x , y) | x ∈ A, y ∈ B} {(x,y) | x y. x ∈ A ∧ y ∈ B}

Binding Operators for Sets

� bounded universal quantifier: ∀x ∈ A. P x

� bounded existential quantifier: ∃x ∈ A. P x

� ballI: (
∧

x . x ∈ A =⇒ P x) =⇒ ∀x ∈ A. P x

� bspec: [[∀x ∈ A. P x;x ∈ A]] =⇒ P x

� bexI: [[P x;x ∈ A]] =⇒ ∃x ∈ A. P x

� bexE: [[∃x ∈ A. P x;
∧

x . [[x ∈ A;P x]] =⇒ Q]] =⇒ Q

Binding Operators for Sets

� bounded universal quantifier: ∀x ∈ A. P x

� bounded existential quantifier: ∃x ∈ A. P x

� ballI: (
∧

x . x ∈ A =⇒ P x) =⇒ ∀x ∈ A. P x

� bspec: [[∀x ∈ A. P x;x ∈ A]] =⇒ P x

� bexI: [[P x;x ∈ A]] =⇒ ∃x ∈ A. P x

� bexE: [[∃x ∈ A. P x;
∧

x . [[x ∈ A;P x]] =⇒ Q]] =⇒ Q

Binding Operators for Sets

� bounded universal quantifier: ∀x ∈ A. P x

� bounded existential quantifier: ∃x ∈ A. P x

� ballI: (
∧

x . x ∈ A =⇒ P x) =⇒ ∀x ∈ A. P x

� bspec: [[∀x ∈ A. P x;x ∈ A]] =⇒ P x

� bexI: [[P x;x ∈ A]] =⇒ ∃x ∈ A. P x

� bexE: [[∃x ∈ A. P x;
∧

x . [[x ∈ A;P x]] =⇒ Q]] =⇒ Q

Binding Operators for Sets

� bounded universal quantifier: ∀x ∈ A. P x

� bounded existential quantifier: ∃x ∈ A. P x

� ballI: (
∧

x . x ∈ A =⇒ P x) =⇒ ∀x ∈ A. P x

� bspec: [[∀x ∈ A. P x;x ∈ A]] =⇒ P x

� bexI: [[P x;x ∈ A]] =⇒ ∃x ∈ A. P x

� bexE: [[∃x ∈ A. P x;
∧

x . [[x ∈ A;P x]] =⇒ Q]] =⇒ Q

Binding Operators for Sets

� bounded universal quantifier: ∀x ∈ A. P x

� bounded existential quantifier: ∃x ∈ A. P x

� ballI: (
∧

x . x ∈ A =⇒ P x) =⇒ ∀x ∈ A. P x

� bspec: [[∀x ∈ A. P x;x ∈ A]] =⇒ P x

� bexI: [[P x;x ∈ A]] =⇒ ∃x ∈ A. P x

� bexE: [[∃x ∈ A. P x;
∧

x . [[x ∈ A;P x]] =⇒ Q]] =⇒ Q

Binding Operators for Sets

� bounded universal quantifier: ∀x ∈ A. P x

� bounded existential quantifier: ∃x ∈ A. P x

� ballI: (
∧

x . x ∈ A =⇒ P x) =⇒ ∀x ∈ A. P x

� bspec: [[∀x ∈ A. P x;x ∈ A]] =⇒ P x

� bexI: [[P x;x ∈ A]] =⇒ ∃x ∈ A. P x

� bexE: [[∃x ∈ A. P x;
∧

x . [[x ∈ A;P x]] =⇒ Q]] =⇒ Q

Relations – Basics

� a relation is a set of pairs (('a × 'b) set)

� identity relation: Id ≡ {p. ∃x . p = (x , x)}
� composition: r O s ≡ {(x , z). ∃y . (x , y) ∈ r ∧ (y , z) ∈ s}
� converse: ((a, b) ∈ r^-1) = ((b, a) ∈ r)

Relations – Reflexive and Transitive Closure

� reflexive and transitive closure: r^*

� transitive closure: r^+

� rtrancl_refl: (a, a) ∈ r^*

� r_into_rtrancl: p ∈ r =⇒ p ∈ r^*

� rtrancl_trans: [[(a, b) ∈ r^*;(b, c) ∈ r^*]] =⇒ (a, c) ∈ r^*

Relations – Basics

� a relation is a set of pairs (('a × 'b) set)

� identity relation: Id ≡ {p. ∃x . p = (x , x)}
� composition: r O s ≡ {(x , z). ∃y . (x , y) ∈ r ∧ (y , z) ∈ s}
� converse: ((a, b) ∈ r^-1) = ((b, a) ∈ r)

Relations – Reflexive and Transitive Closure

� reflexive and transitive closure: r^*

� transitive closure: r^+

� rtrancl_refl: (a, a) ∈ r^*

� r_into_rtrancl: p ∈ r =⇒ p ∈ r^*

� rtrancl_trans: [[(a, b) ∈ r^*;(b, c) ∈ r^*]] =⇒ (a, c) ∈ r^*

Relations – Basics

� a relation is a set of pairs (('a × 'b) set)

� identity relation: Id ≡ {p. ∃x . p = (x , x)}

� composition: r O s ≡ {(x , z). ∃y . (x , y) ∈ r ∧ (y , z) ∈ s}
� converse: ((a, b) ∈ r^-1) = ((b, a) ∈ r)

Relations – Reflexive and Transitive Closure

� reflexive and transitive closure: r^*

� transitive closure: r^+

� rtrancl_refl: (a, a) ∈ r^*

� r_into_rtrancl: p ∈ r =⇒ p ∈ r^*

� rtrancl_trans: [[(a, b) ∈ r^*;(b, c) ∈ r^*]] =⇒ (a, c) ∈ r^*

Relations – Basics

� a relation is a set of pairs (('a × 'b) set)

� identity relation: Id ≡ {p. ∃x . p = (x , x)}
� composition: r O s ≡ {(x , z). ∃y . (x , y) ∈ r ∧ (y , z) ∈ s}

� converse: ((a, b) ∈ r^-1) = ((b, a) ∈ r)

Relations – Reflexive and Transitive Closure

� reflexive and transitive closure: r^*

� transitive closure: r^+

� rtrancl_refl: (a, a) ∈ r^*

� r_into_rtrancl: p ∈ r =⇒ p ∈ r^*

� rtrancl_trans: [[(a, b) ∈ r^*;(b, c) ∈ r^*]] =⇒ (a, c) ∈ r^*

Relations – Basics

� a relation is a set of pairs (('a × 'b) set)

� identity relation: Id ≡ {p. ∃x . p = (x , x)}
� composition: r O s ≡ {(x , z). ∃y . (x , y) ∈ r ∧ (y , z) ∈ s}
� converse: ((a, b) ∈ r^-1) = ((b, a) ∈ r)

Relations – Reflexive and Transitive Closure

� reflexive and transitive closure: r^*

� transitive closure: r^+

� rtrancl_refl: (a, a) ∈ r^*

� r_into_rtrancl: p ∈ r =⇒ p ∈ r^*

� rtrancl_trans: [[(a, b) ∈ r^*;(b, c) ∈ r^*]] =⇒ (a, c) ∈ r^*

Relations – Basics

� a relation is a set of pairs (('a × 'b) set)

� identity relation: Id ≡ {p. ∃x . p = (x , x)}
� composition: r O s ≡ {(x , z). ∃y . (x , y) ∈ r ∧ (y , z) ∈ s}
� converse: ((a, b) ∈ r^-1) = ((b, a) ∈ r)

Relations – Reflexive and Transitive Closure

� reflexive and transitive closure: r^*

� transitive closure: r^+

� rtrancl_refl: (a, a) ∈ r^*

� r_into_rtrancl: p ∈ r =⇒ p ∈ r^*

� rtrancl_trans: [[(a, b) ∈ r^*;(b, c) ∈ r^*]] =⇒ (a, c) ∈ r^*

Relations – Basics

� a relation is a set of pairs (('a × 'b) set)

� identity relation: Id ≡ {p. ∃x . p = (x , x)}
� composition: r O s ≡ {(x , z). ∃y . (x , y) ∈ r ∧ (y , z) ∈ s}
� converse: ((a, b) ∈ r^-1) = ((b, a) ∈ r)

Relations – Reflexive and Transitive Closure

� reflexive and transitive closure: r^*

� transitive closure: r^+

� rtrancl_refl: (a, a) ∈ r^*

� r_into_rtrancl: p ∈ r =⇒ p ∈ r^*

� rtrancl_trans: [[(a, b) ∈ r^*;(b, c) ∈ r^*]] =⇒ (a, c) ∈ r^*

Relations – Basics

� a relation is a set of pairs (('a × 'b) set)

� identity relation: Id ≡ {p. ∃x . p = (x , x)}
� composition: r O s ≡ {(x , z). ∃y . (x , y) ∈ r ∧ (y , z) ∈ s}
� converse: ((a, b) ∈ r^-1) = ((b, a) ∈ r)

Relations – Reflexive and Transitive Closure

� reflexive and transitive closure: r^*

� transitive closure: r^+

� rtrancl_refl: (a, a) ∈ r^*

� r_into_rtrancl: p ∈ r =⇒ p ∈ r^*

� rtrancl_trans: [[(a, b) ∈ r^*;(b, c) ∈ r^*]] =⇒ (a, c) ∈ r^*

Relations – Basics

� a relation is a set of pairs (('a × 'b) set)

� identity relation: Id ≡ {p. ∃x . p = (x , x)}
� composition: r O s ≡ {(x , z). ∃y . (x , y) ∈ r ∧ (y , z) ∈ s}
� converse: ((a, b) ∈ r^-1) = ((b, a) ∈ r)

Relations – Reflexive and Transitive Closure

� reflexive and transitive closure: r^*

� transitive closure: r^+

� rtrancl_refl: (a, a) ∈ r^*

� r_into_rtrancl: p ∈ r =⇒ p ∈ r^*

� rtrancl_trans: [[(a, b) ∈ r^*;(b, c) ∈ r^*]] =⇒ (a, c) ∈ r^*

Relations – Basics

� a relation is a set of pairs (('a × 'b) set)

� identity relation: Id ≡ {p. ∃x . p = (x , x)}
� composition: r O s ≡ {(x , z). ∃y . (x , y) ∈ r ∧ (y , z) ∈ s}
� converse: ((a, b) ∈ r^-1) = ((b, a) ∈ r)

Relations – Reflexive and Transitive Closure

� reflexive and transitive closure: r^*

� transitive closure: r^+

� rtrancl_refl: (a, a) ∈ r^*

� r_into_rtrancl: p ∈ r =⇒ p ∈ r^*

� rtrancl_trans: [[(a, b) ∈ r^*;(b, c) ∈ r^*]] =⇒ (a, c) ∈ r^*

Relations – Basics

� a relation is a set of pairs (('a × 'b) set)

� identity relation: Id ≡ {p. ∃x . p = (x , x)}
� composition: r O s ≡ {(x , z). ∃y . (x , y) ∈ r ∧ (y , z) ∈ s}
� converse: ((a, b) ∈ r^-1) = ((b, a) ∈ r)

Relations – Reflexive and Transitive Closure

� reflexive and transitive closure: r^*

� transitive closure: r^+

� rtrancl_refl: (a, a) ∈ r^*

� r_into_rtrancl: p ∈ r =⇒ p ∈ r^*

� rtrancl_trans: [[(a, b) ∈ r^*;(b, c) ∈ r^*]] =⇒ (a, c) ∈ r^*

Example

lemma "(r O s)^-1 = s^-1 O r^-1"

Proof

Isabelle

Example

lemma "(r O s)^-1 = s^-1 O r^-1"

Proof

Isabelle

Inductively Defined Sets

An Introductory Definition – Even Numbers

inductive_set even :: "nat set" where

zero[intro!]: "0 ∈ even"
| step[intro!]: "n ∈ even =⇒ Suc (Suc n) ∈ even"

Remarks

� intro: declares a lemma as introduction rule (for blast/auto)

� elim: declares a lemma as elimination rule (for blast/auto)

� adding a ! tells the system that a rule is safe (i.e., it can
always be applied without making the goal unprovable)

� even is the smallest set constructed by finitely many
applications of the two rules zero and step (i.e., it contains
only elements that can be added via the rules)

An Introductory Definition – Even Numbers

inductive_set even :: "nat set" where

zero[intro!]: "0 ∈ even"
| step[intro!]: "n ∈ even =⇒ Suc (Suc n) ∈ even"

Remarks

� intro: declares a lemma as introduction rule (for blast/auto)

� elim: declares a lemma as elimination rule (for blast/auto)

� adding a ! tells the system that a rule is safe (i.e., it can
always be applied without making the goal unprovable)

� even is the smallest set constructed by finitely many
applications of the two rules zero and step (i.e., it contains
only elements that can be added via the rules)

An Introductory Definition – Even Numbers

inductive_set even :: "nat set" where

zero[intro!]: "0 ∈ even"
| step[intro!]: "n ∈ even =⇒ Suc (Suc n) ∈ even"

Remarks

� intro: declares a lemma as introduction rule (for blast/auto)

� elim: declares a lemma as elimination rule (for blast/auto)

� adding a ! tells the system that a rule is safe (i.e., it can
always be applied without making the goal unprovable)

� even is the smallest set constructed by finitely many
applications of the two rules zero and step (i.e., it contains
only elements that can be added via the rules)

An Introductory Definition – Even Numbers

inductive_set even :: "nat set" where

zero[intro!]: "0 ∈ even"
| step[intro!]: "n ∈ even =⇒ Suc (Suc n) ∈ even"

Remarks

� intro: declares a lemma as introduction rule (for blast/auto)

� elim: declares a lemma as elimination rule (for blast/auto)

� adding a ! tells the system that a rule is safe (i.e., it can
always be applied without making the goal unprovable)

� even is the smallest set constructed by finitely many
applications of the two rules zero and step (i.e., it contains
only elements that can be added via the rules)

An Introductory Definition – Even Numbers

inductive_set even :: "nat set" where

zero[intro!]: "0 ∈ even"
| step[intro!]: "n ∈ even =⇒ Suc (Suc n) ∈ even"

Remarks

� intro: declares a lemma as introduction rule (for blast/auto)

� elim: declares a lemma as elimination rule (for blast/auto)

� adding a ! tells the system that a rule is safe (i.e., it can
always be applied without making the goal unprovable)

� even is the smallest set constructed by finitely many
applications of the two rules zero and step (i.e., it contains
only elements that can be added via the rules)

An Introductory Definition – Even Numbers

inductive_set even :: "nat set" where

zero[intro!]: "0 ∈ even"
| step[intro!]: "n ∈ even =⇒ Suc (Suc n) ∈ even"

Remarks

� intro: declares a lemma as introduction rule (for blast/auto)

� elim: declares a lemma as elimination rule (for blast/auto)

� adding a ! tells the system that a rule is safe (i.e., it can
always be applied without making the goal unprovable)

� even is the smallest set constructed by finitely many
applications of the two rules zero and step (i.e., it contains
only elements that can be added via the rules)

Even Numbers are Divisible by 2

lemma even_imp_2_dvd: "n ∈ even =⇒ 2 dvd n"
proof (induct rule: even.induct)
case zero show ?case by simp

next

case (step n)
hence IH: "2 dvd n" by simp
then obtain k where "n = 2 * k"
unfolding dvd_def by (rule exE)

hence "Suc (Suc n) = 2 * (Suc k)" by simp
thus ?case unfolding dvd_def by (rule exI)

qed

Advanced Inductive Sets – Arguments

� an inductive definition may take arguments

� hence it is possible to define functions yielding sets inductively

� the keyword for is used to introduce arguments

Reflexive Transitive Closure

inductive_set

rtc :: "('a × 'a) set ⇒ ('a × 'a) set"
("_*" [1000] 999)

for r :: "('a × 'a) set"
where

refl: "(x, x) ∈ r*"
| step: "(x, y) ∈ r =⇒ (y, z) ∈ r* =⇒ (x, z) ∈ r*"

Advanced Inductive Sets – Arguments

� an inductive definition may take arguments

� hence it is possible to define functions yielding sets inductively

� the keyword for is used to introduce arguments

Reflexive Transitive Closure

inductive_set

rtc :: "('a × 'a) set ⇒ ('a × 'a) set"
("_*" [1000] 999)

for r :: "('a × 'a) set"
where

refl: "(x, x) ∈ r*"
| step: "(x, y) ∈ r =⇒ (y, z) ∈ r* =⇒ (x, z) ∈ r*"

Advanced Inductive Sets – Arguments

� an inductive definition may take arguments

� hence it is possible to define functions yielding sets inductively

� the keyword for is used to introduce arguments

Reflexive Transitive Closure

inductive_set

rtc :: "('a × 'a) set ⇒ ('a × 'a) set"
("_*" [1000] 999)

for r :: "('a × 'a) set"
where

refl: "(x, x) ∈ r*"
| step: "(x, y) ∈ r =⇒ (y, z) ∈ r* =⇒ (x, z) ∈ r*"

Advanced Inductive Sets – Arguments

� an inductive definition may take arguments

� hence it is possible to define functions yielding sets inductively

� the keyword for is used to introduce arguments

Reflexive Transitive Closure

inductive_set

rtc :: "('a × 'a) set ⇒ ('a × 'a) set"
("_*" [1000] 999)

for r :: "('a × 'a) set"
where

refl: "(x, x) ∈ r*"
| step: "(x, y) ∈ r =⇒ (y, z) ∈ r* =⇒ (x, z) ∈ r*"

Advanced Inductive Sets – Arguments

� an inductive definition may take arguments

� hence it is possible to define functions yielding sets inductively

� the keyword for is used to introduce arguments

Reflexive Transitive Closure

inductive_set

rtc :: "('a × 'a) set ⇒ ('a × 'a) set"
("_*" [1000] 999)

for r :: "('a × 'a) set"
where

refl: "(x, x) ∈ r*"
| step: "(x, y) ∈ r =⇒ (y, z) ∈ r* =⇒ (x, z) ∈ r*"

Lemma – rtc is Transitive

lemma rtc_trans:
assumes "(x, y) ∈ r*" and "(y, z) ∈ r*"
shows "(x, z) ∈ r*"

Proof

Isabelle

Lemma – rtc is Transitive

lemma rtc_trans:
assumes "(x, y) ∈ r*" and "(y, z) ∈ r*"
shows "(x, z) ∈ r*"

Proof

Isabelle

Evaluation

LVA-Code

703523-0
Additional Questions

a) I can prove simple lemmas in Isabelle/HOL.

b) I would prefer having a final exam instead of a project.

c) The slides were generally helpful.

d) There was too little theory.

Projects

Projects

http://isabelle.in.tum.de/exercises/advanced/sorting/ex.pdf
http://isabelle.in.tum.de/exercises/advanced/mergesort/ex.pdf
http://isabelle.in.tum.de/exercises/advanced/tries/ex.pdf
http://isabelle.in.tum.de/exercises/advanced/interval/ex.pdf
http://isabelle.in.tum.de/exercises/advanced/regmachine/ex.pdf
http://isabelle.in.tum.de/exercises/proj/hanoi/ex.pdf
http://isabelle.in.tum.de/exercises/proj/euclid/ex.pdf
http://isabelle.in.tum.de/exercises/proj/compSE/ex.pdf
http://isabelle.in.tum.de/exercises/proj/bignat/ex.pdf
http://isabelle.in.tum.de/exercises/proj/optComp/ex.pdf

http://isabelle.in.tum.de/exercises/advanced/sorting/ex.pdf
http://isabelle.in.tum.de/exercises/advanced/mergesort/ex.pdf
http://isabelle.in.tum.de/exercises/advanced/tries/ex.pdf
http://isabelle.in.tum.de/exercises/advanced/interval/ex.pdf
http://isabelle.in.tum.de/exercises/advanced/regmachine/ex.pdf
http://isabelle.in.tum.de/exercises/proj/hanoi/ex.pdf
http://isabelle.in.tum.de/exercises/proj/euclid/ex.pdf
http://isabelle.in.tum.de/exercises/proj/compSE/ex.pdf
http://isabelle.in.tum.de/exercises/proj/bignat/ex.pdf
http://isabelle.in.tum.de/exercises/proj/optComp/ex.pdf

