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Today’s Topics

� Sets and Relations

� Inductively Defined Sets

� Evaluation

� Projects



Sets and Relations



Sets in Isabelle

� type

(* characteristic function. *)
type_synonym 'a set = "('a ⇒ bool)"

� x is member of set S if characteristic function returns True

� lemma mem_def: "x ∈ S ≡ S x"



Basic Operations on Sets – Intersection

� notation: A ∩ B (ASCII: A Int B)

� IntI: [[c ∈ A;c ∈ B]] =⇒ c ∈ A ∩ B

� IntD1: c ∈ A ∩ B =⇒ c ∈ A

� IntD2: c ∈ A ∩ B =⇒ c ∈ B

Basic Operations on Sets – Union

� notation: A ∪ B (ASCII: A Un B)

� UnI1: c ∈ A =⇒ c ∈ A ∪ B

� UnI2: c ∈ B =⇒ c ∈ A ∪ B

� UnE: [[c ∈ A ∪ B;c ∈ A =⇒ P;c ∈ B =⇒ P]] =⇒ P
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Set Notation

� the empty set: {}

� the universal set: UNIV

� a singleton set: {x}

� insertion (insert_is_Un): insert x A = {x} ∪ A

� finite sets, e.g., {a, b, c , d}
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An Example Proof

lemma "A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)"

Proof

Isabelle



An Example Proof
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A Shorter Proof – The blast Method

� applies introduction and elimination rules automatically

� suitable for many goals concerning logical and/or set
operations

lemma "A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)" by blast



Set Comprehension by Example

Mathematics Isabelle

{x | P(x)} {x. P x}

{(x , y) | x ∈ A, y ∈ B} {(x,y) | x y. x ∈ A ∧ y ∈ B}



Binding Operators for Sets

� bounded universal quantifier: ∀x ∈ A. P x

� bounded existential quantifier: ∃x ∈ A. P x

� ballI: (
∧

x . x ∈ A =⇒ P x) =⇒ ∀x ∈ A. P x

� bspec: [[∀x ∈ A. P x;x ∈ A]] =⇒ P x

� bexI: [[P x;x ∈ A]] =⇒ ∃x ∈ A. P x

� bexE: [[∃x ∈ A. P x;
∧

x . [[x ∈ A;P x ]] =⇒ Q]] =⇒ Q



Binding Operators for Sets

� bounded universal quantifier: ∀x ∈ A. P x

� bounded existential quantifier: ∃x ∈ A. P x

� ballI: (
∧

x . x ∈ A =⇒ P x) =⇒ ∀x ∈ A. P x

� bspec: [[∀x ∈ A. P x;x ∈ A]] =⇒ P x

� bexI: [[P x;x ∈ A]] =⇒ ∃x ∈ A. P x

� bexE: [[∃x ∈ A. P x;
∧

x . [[x ∈ A;P x ]] =⇒ Q]] =⇒ Q



Binding Operators for Sets

� bounded universal quantifier: ∀x ∈ A. P x

� bounded existential quantifier: ∃x ∈ A. P x

� ballI: (
∧

x . x ∈ A =⇒ P x) =⇒ ∀x ∈ A. P x

� bspec: [[∀x ∈ A. P x;x ∈ A]] =⇒ P x

� bexI: [[P x;x ∈ A]] =⇒ ∃x ∈ A. P x

� bexE: [[∃x ∈ A. P x;
∧

x . [[x ∈ A;P x ]] =⇒ Q]] =⇒ Q



Binding Operators for Sets

� bounded universal quantifier: ∀x ∈ A. P x

� bounded existential quantifier: ∃x ∈ A. P x

� ballI: (
∧

x . x ∈ A =⇒ P x) =⇒ ∀x ∈ A. P x

� bspec: [[∀x ∈ A. P x;x ∈ A]] =⇒ P x

� bexI: [[P x;x ∈ A]] =⇒ ∃x ∈ A. P x

� bexE: [[∃x ∈ A. P x;
∧

x . [[x ∈ A;P x ]] =⇒ Q]] =⇒ Q



Binding Operators for Sets

� bounded universal quantifier: ∀x ∈ A. P x

� bounded existential quantifier: ∃x ∈ A. P x

� ballI: (
∧

x . x ∈ A =⇒ P x) =⇒ ∀x ∈ A. P x

� bspec: [[∀x ∈ A. P x;x ∈ A]] =⇒ P x

� bexI: [[P x;x ∈ A]] =⇒ ∃x ∈ A. P x

� bexE: [[∃x ∈ A. P x;
∧

x . [[x ∈ A;P x ]] =⇒ Q]] =⇒ Q



Binding Operators for Sets

� bounded universal quantifier: ∀x ∈ A. P x

� bounded existential quantifier: ∃x ∈ A. P x

� ballI: (
∧

x . x ∈ A =⇒ P x) =⇒ ∀x ∈ A. P x

� bspec: [[∀x ∈ A. P x;x ∈ A]] =⇒ P x

� bexI: [[P x;x ∈ A]] =⇒ ∃x ∈ A. P x

� bexE: [[∃x ∈ A. P x;
∧

x . [[x ∈ A;P x ]] =⇒ Q]] =⇒ Q



Relations – Basics

� a relation is a set of pairs (('a × 'b) set)

� identity relation: Id ≡ {p. ∃x . p = (x , x)}
� composition: r O s ≡ {(x , z). ∃y . (x , y) ∈ r ∧ (y , z) ∈ s}
� converse: ((a, b) ∈ r^-1) = ((b, a) ∈ r)

Relations – Reflexive and Transitive Closure

� reflexive and transitive closure: r^*

� transitive closure: r^+

� rtrancl_refl: (a, a) ∈ r^*

� r_into_rtrancl: p ∈ r =⇒ p ∈ r^*

� rtrancl_trans: [[(a, b) ∈ r^*;(b, c) ∈ r^*]] =⇒ (a, c) ∈ r^*
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Example

lemma "(r O s)^-1 = s^-1 O r^-1"

Proof

Isabelle
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Inductively Defined Sets



An Introductory Definition – Even Numbers

inductive_set even :: "nat set" where

zero[intro!]: "0 ∈ even"
| step[intro!]: "n ∈ even =⇒ Suc (Suc n) ∈ even"

Remarks

� intro: declares a lemma as introduction rule (for blast/auto)

� elim: declares a lemma as elimination rule (for blast/auto)

� adding a ! tells the system that a rule is safe (i.e., it can
always be applied without making the goal unprovable)

� even is the smallest set constructed by finitely many
applications of the two rules zero and step (i.e., it contains
only elements that can be added via the rules)
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Even Numbers are Divisible by 2

lemma even_imp_2_dvd: "n ∈ even =⇒ 2 dvd n"
proof (induct rule: even.induct)
case zero show ?case by simp

next

case (step n)
hence IH: "2 dvd n" by simp
then obtain k where "n = 2 * k"
unfolding dvd_def by (rule exE)

hence "Suc (Suc n) = 2 * (Suc k)" by simp
thus ?case unfolding dvd_def by (rule exI)

qed



Advanced Inductive Sets – Arguments

� an inductive definition may take arguments

� hence it is possible to define functions yielding sets inductively

� the keyword for is used to introduce arguments

Reflexive Transitive Closure

inductive_set

rtc :: "('a × 'a) set ⇒ ('a × 'a) set"
("_*" [1000] 999)

for r :: "('a × 'a) set"
where

refl: "(x, x) ∈ r*"
| step: "(x, y) ∈ r =⇒ (y, z) ∈ r* =⇒ (x, z) ∈ r*"
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Lemma – rtc is Transitive

lemma rtc_trans:
assumes "(x, y) ∈ r*" and "(y, z) ∈ r*"
shows "(x, z) ∈ r*"

Proof

Isabelle
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LVA-Code

703523-0
Additional Questions

a) I can prove simple lemmas in Isabelle/HOL.

b) I would prefer having a final exam instead of a project.

c) The slides were generally helpful.

d) There was too little theory.
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