

Experiments in Verification

SS 2011

Christian Sternagel

The seal of the University of Innsbruck, featuring a circular design with a figure, a cityscape, and Latin text around the border.

Computational Logic
Institute of Computer Science
University of Innsbruck

April 15, 2011

Today's Topics

- Sets and Relations
- Inductively Defined Sets
- Evaluation
- Projects

Sets and Relations

Sets in Isabelle

- type
 - (* characteristic function. *)
 - `type_synonym 'a set = "('a ⇒ bool)"`
- x is member of set S if characteristic function returns True
- lemma `mem_def: "x ∈ S ≡ S x"`

Basic Operations on Sets – Intersection

Basic Operations on Sets – Intersection

- notation: $A \cap B$ (ASCII: $A \text{ Int } B$)

Basic Operations on Sets – Intersection

- notation: $A \cap B$ (ASCII: $A \text{ Int } B$)
- IntI: $\llbracket c \in A; c \in B \rrbracket \implies c \in A \cap B$

Basic Operations on Sets – Intersection

- notation: $A \cap B$ (ASCII: $A \text{ Int } B$)
- **IntI**: $\llbracket c \in A; c \in B \rrbracket \implies c \in A \cap B$
- **IntD1**: $c \in A \cap B \implies c \in A$

Basic Operations on Sets – Intersection

- notation: $A \cap B$ (ASCII: $A \text{ Int } B$)
- **IntI**: $\llbracket c \in A; c \in B \rrbracket \implies c \in A \cap B$
- **IntD1**: $c \in A \cap B \implies c \in A$
- **IntD2**: $c \in A \cap B \implies c \in B$

Basic Operations on Sets – Intersection

- notation: $A \cap B$ (ASCII: $A \text{ Int } B$)
- **IntI**: $\llbracket c \in A; c \in B \rrbracket \implies c \in A \cap B$
- **IntD1**: $c \in A \cap B \implies c \in A$
- **IntD2**: $c \in A \cap B \implies c \in B$

Basic Operations on Sets – Union

Basic Operations on Sets – Intersection

- notation: $A \cap B$ (ASCII: $A \text{ Int } B$)
- **IntI**: $\llbracket c \in A; c \in B \rrbracket \implies c \in A \cap B$
- **IntD1**: $c \in A \cap B \implies c \in A$
- **IntD2**: $c \in A \cap B \implies c \in B$

Basic Operations on Sets – Union

- notation: $A \cup B$ (ASCII: $A \text{ Un } B$)

Basic Operations on Sets – Intersection

- notation: $A \cap B$ (ASCII: $A \text{ Int } B$)
- **IntI**: $\llbracket c \in A; c \in B \rrbracket \implies c \in A \cap B$
- **IntD1**: $c \in A \cap B \implies c \in A$
- **IntD2**: $c \in A \cap B \implies c \in B$

Basic Operations on Sets – Union

- notation: $A \cup B$ (ASCII: $A \text{ Un } B$)
- **UnI1**: $c \in A \implies c \in A \cup B$

Basic Operations on Sets – Intersection

- notation: $A \cap B$ (ASCII: $A \text{ Int } B$)
- **IntI**: $\llbracket c \in A; c \in B \rrbracket \implies c \in A \cap B$
- **IntD1**: $c \in A \cap B \implies c \in A$
- **IntD2**: $c \in A \cap B \implies c \in B$

Basic Operations on Sets – Union

- notation: $A \cup B$ (ASCII: $A \text{ Un } B$)
- **UnI1**: $c \in A \implies c \in A \cup B$
- **UnI2**: $c \in B \implies c \in A \cup B$

Basic Operations on Sets – Intersection

- notation: $A \cap B$ (ASCII: $A \text{ Int } B$)
- IntI: $\llbracket c \in A; c \in B \rrbracket \implies c \in A \cap B$
- IntD1: $c \in A \cap B \implies c \in A$
- IntD2: $c \in A \cap B \implies c \in B$

Basic Operations on Sets – Union

- notation: $A \cup B$ (ASCII: $A \text{ Un } B$)
- UnI1: $c \in A \implies c \in A \cup B$
- UnI2: $c \in B \implies c \in A \cup B$
- UnE: $\llbracket c \in A \cup B; c \in A \implies P; c \in B \implies P \rrbracket \implies P$

Basic Operations on Sets – Complement and Difference

Basic Operations on Sets – Complement and Difference

- complement: $-A$

Basic Operations on Sets – Complement and Difference

- complement: $-A$
- Compl_ifff: $(c \in -A) \Leftrightarrow (c \notin A)$

Basic Operations on Sets – Complement and Difference

- complement: $-A$
- Compl_ifff: $(c \in -A) \Leftrightarrow (c \notin A)$
- difference: $A - B$

Basic Operations on Sets – Complement and Difference

- complement: $-A$
- Compl_ifff: $(c \in -A) \Leftrightarrow (c \notin A)$
- difference: $A - B$

Basic Operations on Sets – Subsets

Basic Operations on Sets – Complement and Difference

- complement: $-A$
- Compl_ifff: $(c \in -A) \Leftrightarrow (c \notin A)$
- difference: $A - B$

Basic Operations on Sets – Subsets

- notation: $A \subseteq B$ (ASCII: $A \leq B$)

Basic Operations on Sets – Complement and Difference

- complement: $-A$
- Compl_ifff: $(c \in -A) \Leftrightarrow (c \notin A)$
- difference: $A - B$

Basic Operations on Sets – Subsets

- notation: $A \subseteq B$ (ASCII: $A \leq B$)
- subsetI: $(\bigwedge x. x \in A \Rightarrow x \in B) \Rightarrow A \subseteq B$

Basic Operations on Sets – Complement and Difference

- complement: $-A$
- Compl_iff: $(c \in -A) \equiv (c \notin A)$
- difference: $A - B$

Basic Operations on Sets – Subsets

- notation: $A \subseteq B$ (ASCII: $A \leq B$)
- subsetI: $(\bigwedge x. x \in A \Rightarrow x \in B) \Rightarrow A \subseteq B$
- equalityI: $\llbracket A \subseteq B ; B \subseteq A \rrbracket \Rightarrow A = B$

Set Notation

Set Notation

- the empty set: $\{\}$

Set Notation

- the empty set: $\{\}$
- the universal set: UNIV

Set Notation

- the empty set: $\{\}$
- the universal set: UNIV
- a singleton set: $\{x\}$

Set Notation

- the empty set: `{}`
- the universal set: `UNIV`
- a singleton set: `{x}`
- insertion (`insert_is_Un`): `insert x A = {x} ∪ A`

Set Notation

- the empty set: `{}`
- the universal set: `UNIV`
- a singleton set: `{x}`
- insertion (`insert_is_Un`): `insert x A = {x} ∪ A`
- finite sets, e.g., `{a, b, c, d}`

An Example Proof

lemma "A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)"

An Example Proof

lemma "A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)"

Proof

Isabelle

A Shorter Proof – The `blast` Method

- applies introduction and elimination rules automatically
- suitable for many goals concerning logical and/or set operations

```
lemma "A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)" by blast
```

Set Comprehension by Example

Mathematics	Isabelle
$\{x \mid P(x)\}$	$\{x. \ P\ x\}$
$\{(x, y) \mid x \in A, y \in B\}$	$\{(x, y) \mid x\ y. \ x \in A \wedge y \in B\}$

Binding Operators for Sets

- bounded universal quantifier: $\forall x \in A. P x$

Binding Operators for Sets

- bounded universal quantifier: $\forall x \in A. P x$
- bounded existential quantifier: $\exists x \in A. P x$

Binding Operators for Sets

- bounded universal quantifier: $\forall x \in A. P x$
- bounded existential quantifier: $\exists x \in A. P x$
- ballI: $(\bigwedge x. x \in A \implies P x) \implies \forall x \in A. P x$

Binding Operators for Sets

- bounded universal quantifier: $\forall x \in A. P x$
- bounded existential quantifier: $\exists x \in A. P x$
- ballI: $(\bigwedge x. x \in A \implies P x) \implies \forall x \in A. P x$
- bspec: $\llbracket \forall x \in A. P x ; x \in A \rrbracket \implies P x$

Binding Operators for Sets

- bounded universal quantifier: $\forall x \in A. P x$
- bounded existential quantifier: $\exists x \in A. P x$
- `ballI`: $(\bigwedge x. x \in A \implies P x) \implies \forall x \in A. P x$
- `bspec`: $\llbracket \forall x \in A. P x ; x \in A \rrbracket \implies P x$
- `bexI`: $\llbracket P x ; x \in A \rrbracket \implies \exists x \in A. P x$

Binding Operators for Sets

- bounded universal quantifier: $\forall x \in A. P x$
- bounded existential quantifier: $\exists x \in A. P x$
- **ballI**: $(\bigwedge x. x \in A \implies P x) \implies \forall x \in A. P x$
- **bspec**: $\llbracket \forall x \in A. P x ; x \in A \rrbracket \implies P x$
- **bexI**: $\llbracket P x ; x \in A \rrbracket \implies \exists x \in A. P x$
- **bexE**: $\llbracket \exists x \in A. P x ; \bigwedge x. \llbracket x \in A ; P x \rrbracket \implies Q \rrbracket \implies Q$

Relations – Basics

Relations – Basics

- a relation is a **set of pairs** ($('a \times 'b)$ set)

Relations – Basics

- a relation is a set of pairs ($('a \times 'b) \text{ set}$)
- **identity relation**: $\text{Id} \equiv \{p. \exists x. p = (x, x)\}$

Relations – Basics

- a relation is a set of pairs ($('a \times 'b) \text{ set}$)
- identity relation: $\text{Id} \equiv \{p. \exists x. p = (x, x)\}$
- **composition**: $r \circ s \equiv \{(x, z). \exists y. (x, y) \in r \wedge (y, z) \in s\}$

Relations – Basics

- a relation is a set of pairs ($'a \times 'b$ set)
- identity relation: $\text{Id} \equiv \{p. \exists x. p = (x, x)\}$
- composition: $r \circ s \equiv \{(x, z). \exists y. (x, y) \in r \wedge (y, z) \in s\}$
- **converse**: $((a, b) \in r^{\sim -1}) = ((b, a) \in r)$

Relations – Basics

- a relation is a set of pairs ($'a \times 'b$ set)
- identity relation: $\text{Id} \equiv \{p. \exists x. p = (x, x)\}$
- composition: $r \circ s \equiv \{(x, z). \exists y. (x, y) \in r \wedge (y, z) \in s\}$
- converse: $((a, b) \in r^{\text{-1}}) = ((b, a) \in r)$

Relations – Reflexive and Transitive Closure

Relations – Basics

- a relation is a set of pairs ($'a \times 'b$ set)
- identity relation: $\text{Id} \equiv \{p. \exists x. p = (x, x)\}$
- composition: $r \circ s \equiv \{(x, z). \exists y. (x, y) \in r \wedge (y, z) \in s\}$
- converse: $((a, b) \in r^{-1}) = ((b, a) \in r)$

Relations – Reflexive and Transitive Closure

- reflexive and transitive closure: r^*

Relations – Basics

- a relation is a set of pairs ($('a \times 'b) \text{ set}$)
- identity relation: $\text{Id} \equiv \{p. \exists x. p = (x, x)\}$
- composition: $r \circ s \equiv \{(x, z). \exists y. (x, y) \in r \wedge (y, z) \in s\}$
- converse: $((a, b) \in r^{-1}) = ((b, a) \in r)$

Relations – Reflexive and Transitive Closure

- reflexive and transitive closure: r^*
- transitive closure: r^+

Relations – Basics

- a relation is a set of pairs ($('a \times 'b) \text{ set}$)
- identity relation: $\text{Id} \equiv \{p. \exists x. p = (x, x)\}$
- composition: $r \circ s \equiv \{(x, z). \exists y. (x, y) \in r \wedge (y, z) \in s\}$
- converse: $((a, b) \in r^{-1}) = ((b, a) \in r)$

Relations – Reflexive and Transitive Closure

- reflexive and transitive closure: r^*
- transitive closure: r^+
- `rtrancl_refl`: $(a, a) \in r^*$

Relations – Basics

- a relation is a set of pairs ($('a \times 'b) \text{ set}$)
- identity relation: $\text{Id} \equiv \{p. \exists x. p = (x, x)\}$
- composition: $r \circ s \equiv \{(x, z). \exists y. (x, y) \in r \wedge (y, z) \in s\}$
- converse: $((a, b) \in r^{-1}) = ((b, a) \in r)$

Relations – Reflexive and Transitive Closure

- reflexive and transitive closure: r^*
- transitive closure: r^+
- `rtrancl_refl`: $(a, a) \in r^*$
- `r_into_rtrancl`: $p \in r \implies p \in r^*$

Relations – Basics

- a relation is a set of pairs $(\text{'a} \times \text{'b}) \text{ set}$
- identity relation: $\text{Id} \equiv \{p. \exists x. p = (x, x)\}$
- composition: $r \bullet s \equiv \{(x, z). \exists y. (x, y) \in r \wedge (y, z) \in s\}$
- converse: $((a, b) \in r^{-1}) = ((b, a) \in r)$

Relations – Reflexive and Transitive Closure

- reflexive and transitive closure: r^*
- transitive closure: r^+
- `rtrancl_refl`: $(a, a) \in r^*$
- `r_into_rtrancl`: $p \in r \implies p \in r^*$
- `rtrancl_trans`: $[(a, b) \in r^*; (b, c) \in r^*] \implies (a, c) \in r^*$

Example

```
lemma "(r @ s)^-1 = s^-1 @ r^-1"
```

Example

```
lemma "(r @ s)^-1 = s^-1 @ r^-1"
```

Proof

Isabelle

Inductively Defined Sets

An Introductory Definition – Even Numbers

```
inductive_set even :: "nat set" where
  zero[intro!]: "0 ∈ even"
  | step[intro!]: "n ∈ even ⇒ Suc (Suc n) ∈ even"
```

An Introductory Definition – Even Numbers

```
inductive_set even :: "nat set" where
  zero[intro!]: "0 ∈ even"
  | step[intro!]: "n ∈ even ⇒ Suc (Suc n) ∈ even"
```

Remarks

An Introductory Definition – Even Numbers

```
inductive_set even :: "nat set" where
  zero[intro!]: "0 ∈ even"
  | step[intro!]: "n ∈ even ⇒ Suc (Suc n) ∈ even"
```

Remarks

- `intro`: declares a lemma as introduction rule (for `blast/auto`)

An Introductory Definition – Even Numbers

```
inductive_set even :: "nat set" where
  zero[intro!]: "0 ∈ even"
  | step[intro!]: "n ∈ even ⇒ Suc (Suc n) ∈ even"
```

Remarks

- `intro`: declares a lemma as introduction rule (for `blast/auto`)
- `elim`: declares a lemma as elimination rule (for `blast/auto`)

An Introductory Definition – Even Numbers

```
inductive_set even :: "nat set" where
  zero[intro!]: "0 ∈ even"
  | step[intro!]: "n ∈ even ⇒ Suc (Suc n) ∈ even"
```

Remarks

- `intro`: declares a lemma as introduction rule (for `blast/auto`)
- `elim`: declares a lemma as elimination rule (for `blast/auto`)
- adding a `!` tells the system that a rule is safe (i.e., it can always be applied without making the goal unprovable)

An Introductory Definition – Even Numbers

```
inductive_set even :: "nat set" where
  zero[intro!]: "0 ∈ even"
  | step[intro!]: "n ∈ even ⇒ Suc (Suc n) ∈ even"
```

Remarks

- `intro`: declares a lemma as introduction rule (for blast/auto)
- `elim`: declares a lemma as elimination rule (for blast/auto)
- adding a `!` tells the system that a rule is safe (i.e., it can always be applied without making the goal unprovable)
- `even` is the smallest set constructed by finitely many applications of the two rules `zero` and `step` (i.e., it contains only elements that can be added via the rules)

Even Numbers are Divisible by 2

```
lemma even_imp_2_dvd: "n ∈ even ⇒ 2 dvd n"
proof (induct rule: even.induct)
  case zero show ?case by simp
next
  case (step n)
  hence IH: "2 dvd n" by simp
  then obtain k where "n = 2 * k"
    unfolding dvd_def by (rule exE)
  hence "Suc (Suc n) = 2 * (Suc k)" by simp
  thus ?case unfolding dvd_def by (rule exI)
qed
```

Advanced Inductive Sets – Arguments

Advanced Inductive Sets – Arguments

- an inductive definition may take arguments

Advanced Inductive Sets – Arguments

- an inductive definition may take arguments
- hence it is possible to define functions yielding sets inductively

Advanced Inductive Sets – Arguments

- an inductive definition may take arguments
- hence it is possible to define functions yielding sets inductively
- the keyword **for** is used to introduce arguments

Advanced Inductive Sets – Arguments

- an inductive definition may take arguments
- hence it is possible to define functions yielding sets inductively
- the keyword **for** is used to introduce arguments

Reflexive Transitive Closure

```
inductive_set
  rtc :: "('a × 'a) set ⇒ ('a × 'a) set"
    (_*"
      [1000] 999)
    for r :: "('a × 'a) set"
  where
    refl: "(x, x) ∈ r*"
    | step: "(x, y) ∈ r ⇒ (y, z) ∈ r* ⇒ (x, z) ∈ r*"
```

Lemma – rtc is Transitive

```
lemma rtc_trans:  
  assumes "(x, y) ∈ r*" and "(y, z) ∈ r*"  
  shows "(x, z) ∈ r*"
```

Lemma – rtc is Transitive

```
lemma rtc_trans:  
  assumes "(x, y) ∈ r*" and "(y, z) ∈ r*"  
  shows "(x, z) ∈ r*"
```

Proof

Isabelle

Evaluation

LVA-Code

703523-0

Additional Questions

- a) I can prove simple lemmas in Isabelle/HOL.
- b) I would prefer having a final exam instead of a project.
- c) The slides were generally helpful.
- d) There was too little theory.

Projects

Projects

<http://isabelle.in.tum.de/exercises/advanced/sorting/ex.pdf>
<http://isabelle.in.tum.de/exercises/advanced/mergesort/ex.pdf>
<http://isabelle.in.tum.de/exercises/advanced/tries/ex.pdf>
<http://isabelle.in.tum.de/exercises/advanced/interval/ex.pdf>
<http://isabelle.in.tum.de/exercises/advanced/regmachine/ex.pdf>
<http://isabelle.in.tum.de/exercises/proj/hanoi/ex.pdf>
<http://isabelle.in.tum.de/exercises/proj/euclid/ex.pdf>
<http://isabelle.in.tum.de/exercises/proj/compSE/ex.pdf>
<http://isabelle.in.tum.de/exercises/proj/bignat/ex.pdf>
<http://isabelle.in.tum.de/exercises/proj/optComp/ex.pdf>