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Sets and Relations



Sets in Isabelle

* type

type_synonym 'a set = "('a = bool)"

e x is member of set S if characteristic function returns True

e lemma mem_def: "x € S = S x"
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Basic Operations on Sets — Intersection

e notation: AN B (ASCII: AInt B)

e Intl: [c€e A;ce Bl]= ce€ AnB
e IntDl: ce ANB=ccA

e IntD2: ce ANB=c€B

Basic Operations on Sets — Union

e notation: AU B (ASCIl: AUn B)

e UnIl: cec A= cc AUB

e UnI2: ce B=cc€ AUB

e UnE: [c€c AUB;ce A= P;ce B= P]|=P
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Basic Operations on Sets — Complement and Difference

e complement: —A
e Compl_iff: (c € —A)=(c ¢ A)
o difference: A— B

Basic Operations on Sets — Subsets

e notation: A C B (ASCII: A<= B)
e subsetl: (Ax. x€e A= x€B)=— ACB
e equalityl: [ACB;BCAl— A=B
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Set Notation

the empty set: {7}
the universal set: UNIV

a singleton set: {x}

insertion (insert_is_Un): insert x A= {x}UA

finite sets, e.g., {a, b, c, d}



An Example Proof

lemma "A N (BUC) = (ANB) UMRNOC"




An Example Proof
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A Shorter Proof — The blast Method

e applies introduction and elimination rules automatically

e suitable for many goals concerning logical and/or set
operations

lemma "A N (BUC) = (ANB) UC(MANCOC" by blast



Set Comprehension by Example

Mathematics Isabelle

{x| P(x)} {x. P x}
{x,y)|xcAyeB} {(xy) | xy. xc AANycB}
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Binding Operators for Sets

e bounded universal quantifier: Vx € A. P x

e bounded existential quantifier: Ix € A. P x

balll: (Ax. x€e A= P x)=Vx€ A Px
bspec: [Vx € A. P x;x € Al = P x

bexI: [P x;x € Al = 3Ix € A. P x

bexE: [Ax € A. P x;A\x. [x € A;P x] = Q] = Q
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Relations — Basics

e a relation is a set of pairs (('a x 'b) set)

e identity relation: Id = {p. Ix. p = (x,x)}

e composition: r0s ={(x,z). Jy. (x,y) € rA(y,z) € s}
e converse: ((a,b) € r"-1)=((b,a) €r)

Relations — Reflexive and Transitive Closure

e reflexive and transitive closure: r~*

e transitive closure: r~+

e rtrancl_refl: (a,a) € rx*

e r_into_rtrancl: p&r— p € ri*

e rtrancl_trans: [(a,b) € r *;(b,c) € r'*] = (a,c) € r"*



lemma "(r 0 s)°-1 = s°-1 0 r~-1"




lemma "(r 0 s)°-1 = s°-1 0 r~-1"

Isabelle
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An Introductory Definition — Even Numbers
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An Introductory Definition — Even Numbers

inductive_set even :: "nat set" where

zero[intro!]: "0 even"
steplintro!]: "n € even — Suc uc n) € even
| t p[ t '] " S (S ) n

e intro: declares a lemma as introduction rule (for blast/auto)

e elim: declares a lemma as elimination rule (for blast/auto)

e adding a ! tells the system that a rule is safe (i.e., it can
always be applied without making the goal unprovable)

e even is the smallest set constructed by finitely many
applications of the two rules zero and step (i.e., it contains
only elements that can be added via the rules)



Even Numbers are Divisible by 2

lemma even_imp_2_dvd: "n € even — 2 dvd n"
proof (induct rule: even.induct)
case zero show 7case by simp

next
case (step n)

hence IH: "2 dvd n" by simp
then obtain k where "n = 2 x k"
unfolding dvd_def by (rule exE)
hence "Suc (Suc n) = 2 * (Suc k)" by simp
thus 7case unfolding dvd_def by (rule exI)
qed
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Advanced Inductive Sets — Arguments

¢ an inductive definition may take arguments
e hence it is possible to define functions yielding sets inductively

e the keyword for is used to introduce arguments

Reflexive Transitive Closure

inductive_set
rtc :: "('a X 'a) set = ('a x 'a) set"
("_*x" [1000] 999)
for r :: "('a x 'a) set"
where
refl: "(x, x) € rx"

| step: "(x, y) € r = (y, z) € v —= (x, z) € rx"



Lemma — rtc is Transitive

lemma rtc_trans:

assumes "(x, y) € rx" and "(y, z) € r*"
shows "(x, z) € rx"




Lemma — rtc is Transitive

lemma rtc_trans:

assumes "(x, y) € rx" and "(y, z) € r*"
shows "(x, z) € rx"

Isabelle



Evaluation



703523-0

Additional Questions

a
b
c
d

)
)
)
)

| can prove simple lemmas in Isabelle/HOL.
| would prefer having a final exam instead of a project.
The slides were generally helpful.

There was too little theory.
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