mputational
gic

Experiments in Verification
SS 2011

Christian Sternagel

Computational Logic
Institute of Computer Science
University of Innsbruck

April 15, 2011

http://cl-informatik.uibk.ac.at

Today's Topics

Sets and Relations

Inductively Defined Sets
Evaluation

Projects

Sets and Relations

Sets in Isabelle

* type

type_synonym 'a set = "('a = bool)"

e x is member of set S if characteristic function returns True

e lemma mem_def: "x € S = S x"

Basic Operations on Sets — Intersection

Basic Operations on Sets — Intersection

e notation: AN B (ASCII: AInt B)

Basic Operations on Sets — Intersection

e notation: AN B (ASCII: AInt B)
e Intl: [c€e A;ce Bl]= ce€ AnB

Basic Operations on Sets — Intersection

e notation: AN B (ASCII: AInt B)
e Intl: [c€e A;ce Bl]= ce€ AnB
e IntDl: ce ANB=ccA

Basic Operations on Sets — Intersection

notation: AN B (ASCII: AInt B)
Intl: [c€ A;ce Bl= ce€ ANB
IntDl: cce ANB=ccA
IntD2: c€e ANB=c€B

Basic Operations on Sets — Intersection

e notation: AN B (ASCII: AInt B)

e Intl: [c€e A;ce Bl]= ce€ AnB
e IntDl: ce ANB=ccA

e IntD2: ce ANB=c€B

Basic Operations on Sets — Union

Basic Operations on Sets — Intersection

e notation: AN B (ASCII: AInt B)

e Intl: [c€e A;ce Bl]= ce€ AnB
e IntDl: ce ANB=ccA

e IntD2: ce ANB=c€B

Basic Operations on Sets — Union

e notation: AU B (ASCIl: AUn B)

Basic Operations on Sets — Intersection

e notation: AN B (ASCII: AInt B)

e Intl: [c€e A;ce Bl]= ce€ AnB
e IntDl: ce ANB=ccA

e IntD2: ce ANB=c€B

Basic Operations on Sets — Union

e notation: AU B (ASCIl: AUn B)
e Unll: cc A= ccAUB

Basic Operations on Sets — Intersection

e notation: AN B (ASCII: AInt B)

e Intl: [c€e A;ce Bl]= ce€ AnB
e IntDl: ce ANB=ccA

e IntD2: ce ANB=c€B

Basic Operations on Sets — Union

e notation: AU B (ASCIl: AUn B)
e UnIll: ce A=—=ce€ AUB
e UnI2: ce B=ce€ AUB

Basic Operations on Sets — Intersection

e notation: AN B (ASCII: AInt B)

e Intl: [c€e A;ce Bl]= ce€ AnB
e IntDl: ce ANB=ccA

e IntD2: ce ANB=c€B

Basic Operations on Sets — Union

e notation: AU B (ASCIl: AUn B)

e UnIl: cec A= cc AUB

e UnI2: ce B=cc€ AUB

e UnE: [c€c AUB;ce A= P;ce B= P]|=P

Basic Operations on Sets — Complement and Difference

Basic Operations on Sets — Complement and Difference

e complement: —A

Basic Operations on Sets — Complement and Difference

e complement: —A
e Compl_iff: (c € —A)=(c ¢ A)

Basic Operations on Sets — Complement and Difference

e complement: —A
e Compl_iff: (c € —A)=(c ¢ A)
o difference: A— B

Basic Operations on Sets — Complement and Difference

e complement: —A
e Compl_iff: (c € —A)=(c ¢ A)
o difference: A— B

Basic Operations on Sets — Subsets

Basic Operations on Sets — Complement and Difference

e complement: —A
e Compl_iff: (c € —A)=(c ¢ A)
o difference: A— B

Basic Operations on Sets — Subsets

e notation: A C B (ASCII: A<= B)

Basic Operations on Sets — Complement and Difference

e complement: —A
e Compl_iff: (c € —A)=(c ¢ A)
o difference: A— B

Basic Operations on Sets — Subsets

e notation: A C B (ASCII: A<= B)
e subsetl: (Ax. x€e A= x€B)=— ACB

Basic Operations on Sets — Complement and Difference

e complement: —A
e Compl_iff: (c € —A)=(c ¢ A)
o difference: A— B

Basic Operations on Sets — Subsets

e notation: A C B (ASCII: A<= B)
e subsetl: (Ax. x€e A= x€B)=— ACB
e equalityl: [ACB;BCAl— A=B

Set Notation

Set Notation

e the empty set: {}

Set Notation

e the empty set: {}
e the universal set: UNIV

Set Notation

e the empty set: {}
e the universal set: UNIV

e a singleton set: {x}

Set Notation

the empty set: {7}
the universal set: UNIV

a singleton set: {x}

e insertion (insert_is_Un): insert x A={x}UA

Set Notation

the empty set: {7}
the universal set: UNIV

a singleton set: {x}

insertion (insert_is_Un): insert x A= {x}UA

finite sets, e.g., {a, b, c, d}

An Example Proof

lemma "A N (BUC) = (ANB) UMRNOC"

An Example Proof

lemma "A N (BUC) = (ANB) UMRNOC"

Isabelle

A Shorter Proof — The blast Method

e applies introduction and elimination rules automatically

e suitable for many goals concerning logical and/or set
operations

lemma "A N (BUC) = (ANB) UC(MANCOC" by blast

Set Comprehension by Example

Mathematics Isabelle

{x| P(x)} {x. P x}
{x,y)|xcAyeB} {(xy) | xy. xc AANycB}

Binding Operators for Sets

e bounded universal quantifier: Vx € A. P x

Binding Operators for Sets

e bounded universal quantifier: Vx € A. P x

e bounded existential quantifier: Ix € A. P x

Binding Operators for Sets

e bounded universal quantifier: Vx € A. P x
e bounded existential quantifier: Ix € A. P x
e balll: (Ax. x€E A= P x) = Vx€c A Px

Binding Operators for Sets

e bounded universal quantifier: Vx € A. P x

e bounded existential quantifier: Ix € A. P x

e balll: (Ax. x€e A= P x)=Vx€c A Px
e bspec: [Vx € A. P x;x € Al = P x

Binding Operators for Sets

e bounded universal quantifier: Vx € A. P x

e bounded existential quantifier: Ix € A. P x
balll: (Ax. x€e A= P x)=Vx€ A Px
bspec: [Vx € A. P x;x € Al = P x

bexI: [P x;x € Al = 3Ix € A. P x

Binding Operators for Sets

e bounded universal quantifier: Vx € A. P x

e bounded existential quantifier: Ix € A. P x

balll: (Ax. x€e A= P x)=Vx€ A Px
bspec: [Vx € A. P x;x € Al = P x

bexI: [P x;x € Al = 3Ix € A. P x

bexE: [Ax € A. P x;A\x. [x € A;P x] = Q] = Q

Relations — Basics

Relations — Basics

e a relation is a set of pairs (('a x 'b) set)

Relations — Basics

e a relation is a set of pairs (('a x 'b) set)

e identity relation: Id = {p. Ix. p = (x,x)}

Relations — Basics

e a relation is a set of pairs (('a x 'b) set)
e identity relation: Id = {p. Ix. p = (x,x)}
e composition: r0s ={(x,z). Jy. (x,y) € rA(y,z) € s}

Relations — Basics

e a relation is a set of pairs (('a x 'b) set)

e identity relation: Id = {p. Ix. p = (x,x)}

e composition: r 0s = {(x,z). Jy. (x,y) € rA(y,z) € s}
e converse: ((a,b) € r"-1)=((b,a) €r)

Relations — Basics

e a relation is a set of pairs (('a x 'b) set)

e identity relation: Id = {p. Ix. p = (x,x)}

e composition: r0s ={(x,z). Jy. (x,y) € rA(y,z) € s}
e converse: ((a,b) € r"-1)=((b,a) €r)

Relations — Reflexive and Transitive Closure

Relations — Basics

e a relation is a set of pairs (('a x 'b) set)

e identity relation: Id = {p. Ix. p = (x,x)}

e composition: r0s ={(x,z). Jy. (x,y) € rA(y,z) € s}
e converse: ((a,b) € r"-1)=((b,a) €r)

Relations — Reflexive and Transitive Closure

e reflexive and transitive closure: r~*

Relations — Basics

a relation is a set of pairs (('a x 'b) set)

identity relation: Id = {p. Ix. p = (x,x)}
e composition: r0s ={(x,z). Jy. (x,y) € rA(y,z) € s}
converse: ((a,b) € r™-1) =((b,a) € r)

Relations — Reflexive and Transitive Closure

e reflexive and transitive closure: r~*

e transitive closure: r™+

Relations — Basics

a relation is a set of pairs (('a x 'b) set)

identity relation: Id = {p. Ix. p = (x,x)}
e composition: r0s ={(x,z). Jy. (x,y) € rA(y,z) € s}
converse: ((a,b) € r™-1) =((b,a) € r)

Relations — Reflexive and Transitive Closure

e reflexive and transitive closure: r~*

e transitive closure: r™+

e rtrancl_refl: (a,a) € rx*

Relations — Basics

e a relation is a set of pairs (('a x 'b) set)

e identity relation: Id = {p. Ix. p = (x,x)}

e composition: r0s ={(x,z). Jy. (x,y) € rA(y,z) € s}
e converse: ((a,b) € r"-1)=((b,a) €r)

Relations — Reflexive and Transitive Closure

e reflexive and transitive closure: r~*
e transitive closure: r™+
e rtrancl_refl: (a,a) € rx*

e r_into_rtrancl: p&r— p € ri*

Relations — Basics

e a relation is a set of pairs (('a x 'b) set)

e identity relation: Id = {p. Ix. p = (x,x)}

e composition: r0s ={(x,z). Jy. (x,y) € rA(y,z) € s}
e converse: ((a,b) € r"-1)=((b,a) €r)

Relations — Reflexive and Transitive Closure

e reflexive and transitive closure: r~*

e transitive closure: r~+

e rtrancl_refl: (a,a) € rx*

e r_into_rtrancl: p&r— p € ri*

e rtrancl_trans: [(a,b) € r *;(b,c) € r'*] = (a,c) € r"*

lemma "(r 0 s)°-1 = s°-1 0 r~-1"

lemma "(r 0 s)°-1 = s°-1 0 r~-1"

Isabelle

Inductively Defined Sets

An Introductory Definition — Even Numbers

inductive_set even :: "nat set" where

zero[intro!]: "0 even"
steplintro!]: "n € even — Suc uc n) € even
| t p[t '] " S (S) n

inductive_set even :: "nat set" where

zero[intro!]: "0 even"
steplintro!]: "n € even — Suc uc n) € even
| t p[t '] " S (S) n

inductive_set even :: "nat set" where

zero[intro!]: "0 even"
steplintro!]: "n € even — Suc uc n) € even
| t p[t '] " S (S) n

e intro: declares a lemma as introduction rule (for blast/auto)

inductive_set even :: "nat set" where

zero[intro!]: "0 even"
steplintro!]: "n € even — Suc uc n) € even
| t p[t '] " S (S) n

e intro: declares a lemma as introduction rule (for blast/auto)

e elim: declares a lemma as elimination rule (for blast/auto)

An Introductory Definition — Even Numbers

inductive_set even :: "nat set" where

zero[intro!]: "0 even"
steplintro!]: "n € even — Suc uc n) € even
| t p[t '] " S (S) n

e intro: declares a lemma as introduction rule (for blast/auto)

e elim: declares a lemma as elimination rule (for blast/auto)

e adding a ! tells the system that a rule is safe (i.e., it can
always be applied without making the goal unprovable)

An Introductory Definition — Even Numbers

inductive_set even :: "nat set" where

zero[intro!]: "0 even"
steplintro!]: "n € even — Suc uc n) € even
| t p[t '] " S (S) n

e intro: declares a lemma as introduction rule (for blast/auto)

e elim: declares a lemma as elimination rule (for blast/auto)

e adding a ! tells the system that a rule is safe (i.e., it can
always be applied without making the goal unprovable)

e even is the smallest set constructed by finitely many
applications of the two rules zero and step (i.e., it contains
only elements that can be added via the rules)

Even Numbers are Divisible by 2

lemma even_imp_2_dvd: "n € even — 2 dvd n"
proof (induct rule: even.induct)
case zero show 7case by simp

next
case (step n)

hence IH: "2 dvd n" by simp
then obtain k where "n = 2 x k"
unfolding dvd_def by (rule exE)
hence "Suc (Suc n) = 2 * (Suc k)" by simp
thus 7case unfolding dvd_def by (rule exI)
qed

Advanced Inductive Sets — Arguments

Advanced Inductive Sets — Arguments

e an inductive definition may take arguments

Advanced Inductive Sets — Arguments

e an inductive definition may take arguments

e hence it is possible to define functions yielding sets inductively

Advanced Inductive Sets — Arguments

¢ an inductive definition may take arguments
e hence it is possible to define functions yielding sets inductively

e the keyword for is used to introduce arguments

Advanced Inductive Sets — Arguments

¢ an inductive definition may take arguments
e hence it is possible to define functions yielding sets inductively

e the keyword for is used to introduce arguments

Reflexive Transitive Closure

inductive_set
rtc :: "('a X 'a) set = ('a x 'a) set"
("_*x" [1000] 999)
for r :: "('a x 'a) set"
where
refl: "(x, x) € rx"

| step: "(x, y) € r = (y, z) € v —= (x, z) € rx"

Lemma — rtc is Transitive

lemma rtc_trans:

assumes "(x, y) € rx" and "(y, z) € r*"
shows "(x, z) € rx"

Lemma — rtc is Transitive

lemma rtc_trans:

assumes "(x, y) € rx" and "(y, z) € r*"
shows "(x, z) € rx"

Isabelle

Evaluation

703523-0

Additional Questions

a
b
c
d

)
)
)
)

| can prove simple lemmas in Isabelle/HOL.
| would prefer having a final exam instead of a project.
The slides were generally helpful.

There was too little theory.

http:
http:
http:
http:
http:
http:
http:
http:
http:
http:

//isabelle.
//isabelle.
//isabelle.
//isabelle.
//isabelle.
//isabelle.
//isabelle.
//isabelle.
//isabelle.
//isabelle.

in.
in.
in.
in.
in.
in.

in

in.
in.
in.

tum
tum

tum.
tum.
tum.
tum.
.tum.
tum.

tum

.de/exercises/advanced/sorting/ex.pdf
.de/exercises/advanced/mergesort/ex.pdf

de/exercises/advanced/tries/ex.pdf
de/exercises/advanced/interval/ex.pdf
de/exercises/advanced/regmachine/ex.pdf
de/exercises/proj/hanoi/ex.pdf
de/exercises/proj/euclid/ex.pdf
de/exercises/proj/compSE/ex.pdf

.de/exercises/proj/bignat/ex.pdf
tum.

de/exercises/proj/optComp/ex.pdf

http://isabelle.in.tum.de/exercises/advanced/sorting/ex.pdf
http://isabelle.in.tum.de/exercises/advanced/mergesort/ex.pdf
http://isabelle.in.tum.de/exercises/advanced/tries/ex.pdf
http://isabelle.in.tum.de/exercises/advanced/interval/ex.pdf
http://isabelle.in.tum.de/exercises/advanced/regmachine/ex.pdf
http://isabelle.in.tum.de/exercises/proj/hanoi/ex.pdf
http://isabelle.in.tum.de/exercises/proj/euclid/ex.pdf
http://isabelle.in.tum.de/exercises/proj/compSE/ex.pdf
http://isabelle.in.tum.de/exercises/proj/bignat/ex.pdf
http://isabelle.in.tum.de/exercises/proj/optComp/ex.pdf

