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Measure Theory in Lean

Measure theory in Lean currently contains 10k lines of code + 2k lines of
comments (slightly less than 4% of mathlib).
Some highlights:

@ Yury Kudryashov: FTC-1, Jensen's inequality, ...

@ Benjamin Davidson: FTC-2 (as of 12 hours ago)

Rémy Degenne: LP-spaces and Holder's inequality.

@ Markus Himmel: Borel-Cantelli lemma (one direction)

@ Martin Zinkevich: working towards the Radon—Nikodym theorem
@ Sebastien Gouezel: refactor of the Bochner integral

@ Me: Haar Measure, Fubini's Theorem

Much of the original library was built by Johannes Hélzl, Mario Carneiro
and Zhouhang Zhou.
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Refresher on Measure Theory

Definition
A o-algebra ¥ on X is a collection of subsets of X that contains the
empty set, is closed under complement and countable unions.

Definition

If ¥ is a o-algebra on X, then a measure on X is a function p: ¥ — [0, o0]
such that (@) =0 and p is countably additive: For pairwise disjoint sets
{Al}l we have

o (Uiew Ai) = Xjeny 1(As).

Definition
An outer measure on X is a monotone function m : P(X) — [0, c0] such
that m(@) = 0 and m is countably subadditive: for any sets {A;}; we have

m (U::N Az) < DieN m(Al)
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Design Decisions

@ A o-algebra on a type X is given by the typeclass
[measurable_space X].
@ We define a measure as an outer measure with two extra properties:

» It is countably additive on measurable sets
» For a (non-measurable) set s

p(s)=[1 n®)
sCt
t measurable

This means that we can nicely evaluate a measure on any set, not
just measurable ones.

@ You can talk about measures by either having
example {a} [measurable_space «] (u : measure «) or
example {«} [measure_space «J.
In the second case, the measure is called volume. All results about
arbitrary measures are written using the first option.
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Lebesgue integral

The library contains two integrals.
Definition
If g: X — [0,00] is a simple function (a function with finite range), we can
define
[ gdu= [ 9@ udn)= ¥ wg™Hyh v
yeg(X)

If f:X — [0,00] is any function, we can define the (lower) Lebesgue
integral of f as the supremum of [ g u(dx) for all simple g < f (pointwise).
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Bochner integral

Definition
If £ is a (second-countable) Banach space then we call a function
f:X — E (u-)integrable if

[ 1Al < oo

Definition
We define L'(X, F; ;1) to be the u-integrable functions f : X - E modulo
a.e. equality. So f ~ g iff u{x | f(x) #g(x)} =0.

Definition
The Bochner integral [ fdu € E is defined first for simple L' functions.

The simple functions are dense L!(X, E; ), so we can continuously
extend it to all integrable functions.
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Product measures

Definition
A measure p on X is o-finite if X can be covered by a countable
collection of measurable sets {4;}; such that u(A;) < co.

If 1 is a o-finite measure on X and v a o-finite measure on Y then we can
define the product measure px v on X x Y. It can be defined as

(nx0)(A) = [ viy| (2.9) € A} (do).
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Product measures

Definition
A measure p on X is o-finite if X can be covered by a countable
collection of measurable sets {4;}; such that u(A;) < co.

If 1 is a o-finite measure on X and v a o-finite measure on Y then we can
define the product measure px v on X x Y. It can be defined as

(nx0)(A) = [ viy| (2.9) € A} (do).
Fun fact: using the Giry monad, it can be defined as

puxv=do x <« pu,
Yy<v,

return (z,y).
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Tonelli's theorem

Theorem (Tonelli's theorem)

Let f: X xY — [0,00] be a measurable function (i.e. the preimage of
measurable sets under f are measurable).
Then

Joo Fawa) = [ [ @y v@un) = [ [ f.y)pw).

and all the functions in the integrals above are measurable.
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Fubini's theorem

Theorem (Fubini's theorem for the Bochner integral)

Let E be a second-countable Banach space and f: X xY — E be an

integrable function (i.e. [y v |f|d(pxv) < o).
Then

[ ra) = [ [ @y vayue) = [ [ f@y)a@ma),

Moreover, all the functions in the integrals above are measurable.

Remark. f: X xY — FE is integrable iff the following two conditions hold:
e for almost all x € X the function y — f(z,y) is integrable;

o The function =~ [ | f(z,y)|v(dy) is integrable.
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Remarks

o | followed lsabelle’s formalization for some key lemmas in the proof of
Fubini's theorem.

@ Since yesterday we can take finite products of measures.
@ The following two induction principles are useful:

@ To show a property P for all measurable functions X — [0, co] it is
sufficient to show it for ¢- x 4, and that the property is closed under
addition and countable monotone supremum.

@ To show a property P for all integrable functions X — FE it is sufficient
to show it for ¢ x 4, that the property is closed under addition and
a.e.-equality and that {f e L'(X, E;pu) | P(f)} is a closed set.
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Regular measures

Definition

A measure p is regular if the following properties hold.
e if K is compact then u(K) < oo;
@ 1 is outer regular: if A is measurable, then

A)= inf ;
1(A) Ugilnopenu(U),

@ . is inner regular: if U is open, then

pU)= sup  p(K).

KcU compact
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Invariant measures

Definition

A topological group is a group (G,-, ') that is also a topological space
such that the multiplication - : G x G - G and inversion ™' : G - G are
continuous.

Definition
A (left) invariant measure on a topological group G (equipped with the

Borel o-algebra) is a measure p such that for all g € G and all measurable
A we have

1(gA) = p(A).

Here gA ={gh|he A}.
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Haar measure

Theorem

Given a locally compact® Hausdorff® topological group G. Then there is a
nonzero left invariant regular measure j1 on G, called the (left) Haar
measure on G. Moreover, if v is another left Haar measure on G, then v is
a multiple of .

“every point has a compact neighborhood
bevery pair of distinct points has a pair of disjoint neighborhoods

Example: (R,+) is a locally compact Hausdorff group, and the Haar
measure of R is (a multiple of) the Lebesgue measure A, which is the
unique measure with the property that A([a,b]) =b—a for all a and b.
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Proof sketch (existence)

o If K is compact and U is open, we can cover K with finitely many
left-translates gU for g € G. Define (K : U) to be the least number of
left-translates needed.

@ Fix any compact set K with non-empty interior. We can
approximate the Haar measure of K by hy(K) = (K :U)/(Ko:U).

o Let h(K) be the “limit" of this quotient as U becomes a smaller and
smaller open neighborhoods of 1.}

@ We can now define the Haar measure on open sets U as

p(U)= sup  h(K).

KcU compact

We can extend it to all measurable sets A by

M(A) - U2114n£pen M(U)

1 The technical details involve infinite products and Tychonoff's theorem.
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Uniqueness

o If p is left invariant, then for each y we have

| fon) = [ f@ntaa).

@ Uniqueness can be proven by computing a certain double integral in a
smart way, and using Tonelli's theorem to swap the order of
integration.

@ It is almost sorry-free™.

Floris van Doorn (University of Pittsburgh) Measure Theory January 4, 2021 15 /17



Future work

Some important future directions:

@ Using Haar measure we can start on abstract harmonic analysis,
Pontryagin duality, and representation theory of locally compact
groups.

@ Multivariate calculus: Green's theorem and Stokes’ theorem.

o Complex calculus: Cauchy's integral formula.
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Thank You
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