
Arithmetic in Metamath
Case Study: Bertrand’s Postulate
MARIO CARNEIRO

24 JULY 2015

What is Metamath?
• A computer language for representing mathematical proofs

• The Metamath spec is two pages, one verifier exists in ≈300 lines of Python

• Eight independent verifiers exist in eight different languages

• Two proof assistants (MM-PA and mmj2) with another (smm) in development

• A project to formalize modern mathematics from a simple foundation

• Four major databases
• ZFC set theory (set.mm)
• Over 25000 proofs, 500K lines, 24M file

• HOL type theory (hol.mm)

• Intuitionistic logic (iset.mm)

• NF set theory (nf.mm)
• Including Specker’s proof of ¬AC

Metamath 100
• A project to prove the “Formalizing 100 Theorems” list tracked by Freek Wiedijk

• Currently 55 theorems proven (one short of Isabelle)

• New since last year: (in chronological order)
• Divergence of Harmonic series

• Lagrange subgroup theorem

• Number of Combinations

• Divisibility by 3

• Lagrange four-square thm

• Factor and Remainder thms

• Basel problem

• Divergence of inverse primes

• Fundamental thm of Calculus

• Mean value theorem

• Fundamental thm of Algebra

• Sum of angles in a triangle

• Solutions to Pell’s equation

• Liouville’s theorem

• Sylow’s theorem

• Wilson’s theorem

• Erdős-Szekeres theorem

• Derangements formula

• Leibniz’ series for 𝜋

• Konigsberg Bridge problem

• Birthday problem

• Ramsey’s theorem

• Solution to a Cubic

• Solution to a Quartic

• GCH implies AC (Wednesday)

• Ptolemy’s theorem

• Law of Cosines

• Quadratic reciprocity

• Sums of two squares

• Arithmetic/Geometric means

http://www.cs.ru.nl/~freek/100/

Metamath 100

Bertrand’s Postulate

Birthday Problem

Cubic Formula

Quartic Formula

How does it work?
• A theorem or axiom has a list of

hypotheses and a conclusion, which are
sequences of constant and variable
symbols
• i.e. 𝜑 is a variable, → is a constant

• Definitions are the same as axioms
• A separate program uses a simple “checklist”

to ensure definitions are conservative

• 2 is a constant symbol; its definition is given
by the definition/axiom 2 = 1 + 1

How does it work?
• Each step is a direct substitution for the

variables in a previous theorem or axiom,
possibly with hypotheses

• No symbol is meaningful until it is given a
definition, so a number like 999 will be a
syntax error unless it is defined
• and even then it may not necessarily be

defined to mean 103 − 1

• It is possible to define arbitrary syntax with
multiple variables like 𝜑 → 𝜓
• Ambiguity is not allowed: 𝜑 → 𝜓 is not valid

because 𝜑 → 𝜓 → 𝜒 has two parse trees

• Prefix syntax like →𝜑𝜓 are always valid

Bertrand’s Postulate
• There is a prime between 𝑛 and 2𝑛

• Most proofs, like Erdős’s, start with:
“Assume that 𝑛 > 4000.”
• That’s a lot of base cases!

• These base cases are addressed with the
sequence 2,3,5,7,13,23,43,83,163,317,631,
1259,2503 which (we claim) contains only
primes
• How to prove a number is prime?
• Trial division

• Pocklington’s theorem (thank you Mizar)

• Need a good way to handle large arithmetic calculations

The decimal operator
• Define ;𝐴𝐵 = 10𝐴 + 𝐵

• Ex: ;13 = 10 ⋅ 1 + 3,
;;269 = 10 ⋅ 10 ⋅ 2 + 6 + 9

• Base 10, not base 4

• Structure of a decimal term is as a tree of “low digit” –
“higher digits” nodes
• Technically allows “nonstandard” constructions such as

;2;69 = 89 but these are not used in the algorithm

• Ten has two representations – the symbol 10 and ; 1 0

Building blocks

Building blocks
• We can recurse over the tree (list) structure of a term

• The basic algorithms for addition and multiplication can be defined
recursively over the structure

• Algorithms like Karatsuba require splitting the input digit string in half,
which cannot be done in one step but can be done with a helper theorem
in O(n) steps

• Asymptotics similar to list operations in Lisp

• Similar techniques can be applied to store many data structures, like
graphs (see konigsberg)

http://us.metamath.org/mpegif/konigsberg.html

The algorithm
• Proofs are context free (always the same steps given the same input

assertion)
• Allows for a simple recursive structure: Decide what theorem to apply

based on the form of the goal, and then prove the resulting subgoals

• We can evaluate terms as part of determining the theorem to apply
• “Evaluate” here means to convert the term ;;123 to the integer 123, or

evaluate a multiplication or addition using Mathematica’s native
operations

• This allows us to fail quickly if we are asked to prove the unprovable

• The reverse is also possible, converting 123 to ;;123

• Ex: if the goal is of the form ;𝐴𝐵 < ;𝐶𝐷 and eval 𝐴 ≠ eval 𝐵 , then
apply decltc (if the goal is true then the subgoals will be too)

http://us.metamath.org/mpegif/decltc.html

The result

2exp8 $p |- (2 ^ 8) = ; ; 2 5 6 $=
(c2 c5 cdc c6 c1 c4 c8 2nn0 4nn0 nn0cni c9 1nn0 6nn0 9nn0 cmul co nncni c3
2cn caddc 4t2e8 mulcomli 2exp4 deccl eqid mulid1i 1p1e2 5nn0 9nn 6nn 9p6e15
addcomli decaddci 3nn0 oveq1i 6p3e9 eqtri 6t6e36 decmul1c decmul2c numexp2x
mulid2i) AABCZDCEDCZFGHIFAGFIJSUAUBUCEDVCDVDKVDEDLMUDZLMVDUEZMNEDBAVDEOPKL
MNVDVDVEJUFUGUHKDEBCKUIQDUJQZUKULUMEDKDDRVDMLMVFMUNEDOPZRTPDRTPKVHDRTDVGVBU
OUPUQURUSUTVA $.

Limitations
• This is a limited domain theorem prover

• Can prove any true statement using:
• The symbols 0,1,2,3,4,5,6,7,8,9,10

• The operators + ⋅ ; <

• The operators ∈ ℕ, ∈ ℕ0, ∈ ℂ.

• Additions are possible for handling e.g. exponentiation

• Most (all?) “numerical” theorems (involving only concrete numbers, not variables) can be
reduced to addition, multiplication, and strict order of nonnegative integers, so this is not a big
restriction

Success stories
• The first version of the arithmetic algorithm was created in Feb 2014

• Used for the proof of bpos (Bertrand’s postulate)

• The second version was made in Apr 2015, concurrent with this paper
(http://arxiv.org/abs/1503.02349)

• Used for the proof of log2ub (log 2 <
253

365
), a lemma for birthday (the Birthday problem)

• We don’t need to be afraid of big numbers anymore (i.e. casual usage when convenient)
• Used for the cubic and quartic equations, where numbers like 33 = 27 and 44 = 256 appear

http://us.metamath.org/mpegif/bpos.html
http://arxiv.org/abs/1503.02349
http://us.metamath.org/mpegif/log2ub.html
http://us.metamath.org/mpegif/birthday.html
http://us.metamath.org/mpegif/cubic.html
http://us.metamath.org/mpegif/quartic.html

Why did it take so long?
• Metamath, like many formal systems, is geared toward abstract math

• Most abstract math does not need numbers larger than 10

• Computers are comfortable with bigger numbers than humans

• Automation in Metamath is in its infancy
• This is the first Metamath theorem prover which produces complete proofs

• Metamath does have a step search of depth up to around 3

• Much more is planned, and current work on the new smm proof assistant promises “user scripts” like
HOL proof programs

Flyspeck
• Flyspeck is Tom Hales’ recently completed project to prove the Kepler Conjecture in HOL Light

and Isabelle

• Is it feasible to port Flyspeck to Metamath?
• Not yet

• A Metamath proof verifies in linear time, but the proofs are longer
• The length of a Metamath proof is proportional to the running time of a HOL Light proof

• How to optimize for Metamath
• No searches: you already know the answer!

• Metamath proves NP-hard problems in polynomial time (cf. Luís “offline oracles”)

• Spend more time making the proofs shorter
• Round all numbers to the minimum needed to establish an inequality

Questions

