N,

Arithmetic in Metamath
Case Study: Bertrand’s Postulate

MARIO CARNEIRO
24 JULY 2015

What is Metamath?

* A computer language for representing mathematical proofs
* The Metamath spec is two pages, one verifier exists in =300 lines of Python

* Eight independent verifiers exist in eight different languages
* Two proof assistants (MM-PA and mmj2) with another (smm) in development

* A project to formalize modern mathematics from a simple foundation

* Four major databases

e ZFC set theory (set.mm)
* Over 25000 proofs, 500K lines, 24M file

* HOL type theory (hol.mm)
* Intuitionistic logic (iset.mm)

* NF set theory (nf.mm)
* Including Specker’s proof of =AC

Metamath 100

* A project to prove the “Formalizing 100 Theorems” list tracked by Freek Wiedijk

* Currently 55 theorems proven (one short of Isabelle)

* New since last year: (in chronological order)

Divergence of Harmonic series
Lagrange subgroup theorem
Number of Combinations
Divisibility by 3

Lagrange four-square thm
Factor and Remainder thms
Basel problem

Divergence of inverse primes
Fundamental thm of Calculus
Mean value theorem

Fundamental thm of Algebra
Sum of angles in a triangle
Solutions to Pell’s equation
Liouville’s theorem

Sylow’s theorem

Wilson’s theorem
ErdGs-Szekeres theorem
Derangements formula
Leibniz’ series for
Konigsberg Bridge problem

Birthday problem

Ramsey’s theorem

Solution to a Cubic

Solution to a Quartic

GCH implies AC (Wednesday)
Ptolemy’s theorem

Law of Cosines

Quadratic reciprocity

Sums of two squares
Arithmetic/Geometric means

http://www.cs.ru.nl/~freek/100/

Metamath 100

Metamath 100 Theorems Proved over Time Date Added / Total Proved

Quartic Formula
“—— Cubic Formula

Birthday Problem

Authors

45

@ Mario Cameiro

@ Norman Megill

& Scott Fenton

@ Paul Chapman

@ Stefan O'Rear

@ David A. Wheeler

@ Steve Rodriguez

@ Raph Levien .*I

30

Bertrand’s Postulate

15

e
L]
1995-01-0) ® 5000-01-01 2005-01-01 2010-01-01 2015-01-01

How does it work?

* A theorem or axiom has a list of
hypotheses and a conclusion, which are

Assertion
sequences of constant and variable Ref|Expression
symbols idl |- (v — @)
* i.e. ¢ is avariable, — is a constant Proof of Theorem idl
StepHyp| Ref Expression
* Definitions are the same as axioms 1 ax-1: |2F (2 — (2 —)
A separate program uses a simple “checklist” : axl: | 2F(w—((v—e)—e)
to ensure definitions are conservative 3 axds |:F(wo(wow) o)) ole - - e - e))
4 [2.3 jax-mps|2F((® — (- @)) - (@ — ©))
» 2 is a constant symbol; its definition is given 5 L4 |axmpi| (¢ — @)
by the definition/axiom 2 =1+ 1 Colors of variablec: wffact cloos
Definition df-2 s Syntaxhints: — w4
Description: Define the number 2. This theorem is referenced by: pm4.24 676 fz0n 13302 Idilval 19725 dibQ zos4s dihl 20052 dihslblemSapre 20054
Assertion This theorem was proved from axioms: ax-1: ax-2 6 ax-mps
REf EIP]'ESSiﬂIl Copyright terms: Public domain

df-2|F 2 =(1+1)

How does it work?

* Each step is a direct substitution for the
variables in a previous theorem or axiom,

Assertion
possibly with hypotheses Ref|Expression
idl | (& — @)
* No symbol is meaningful until it is given a :
definition, so a number like 999 will be a < Uiy
L. . ep|Hyp| Ref Expression
syntax error unless it is defined 1 . [e=lo=0)
* and even then it may not necessarily be 2 ax-1s | sk(© = (v — ¢ = @)
defined to mean 103 — 1 3 ax2e | sH((p = (v w) o)) = (0 =@ o el =@ =)
4 (2.3 laxmpsf: ([= (v = @)) = (v = @)
* Itis possible to define arbitrary syntax with 5 |Ldjaxemps) (v — @)
mUItlpIe Varlables Ilke ((p - llj) Colors of variables: wif zet class

Swntax hints: — wi4

* Ambiguity is not allowed: ¢ — 1 is not valid

This theorem is referenced by: pmd.24 576 fz0n 12202 1dilval 19725 dibQ zoz4s dihl 20e:52 dihglblemSapre 20954
because ¢ — 1) = y has two parse trees

This theorem was proved from axioms: ax-1: ax-2 6 ax-mps

* Prefix syntax like -1 are always valid Copyriant tems: Eublic domain

Bertrand’s Postulate

There is a prime between n and 2n

Most proofs, like Erdds’s, start with:
“Assume that n > 4000.”

* That’s a lot of base cases!

These base cases are addressed with the
sequence 2,3,5,7,13,23,43,83,163,317,631,
1259,2503 which (we claim) contains only
primes
* How to prove a number is prime?

* Trial division

* Pocklington’s theorem (thank you Mizar)

Theorem bpos 15727
Description: Bertrand's postulate: there is a prime between /V and 2V for
every positive integer /. This proof follows Erdos's method, for the most
part, but with some refinements due to Shigenori Tochiori to save us some
calculations of large primes. See http://en.wikipedia.org
{wikiProof of Bertrand%27s postulate for an overview of the proof
strategy. (Contributed by Mario Carneiro, 14-Mar-2014)

Assertion

Ref Expression

bpos|- (W e —ApeP (¥ <parp<(2- V)

Need a good way to handle large arithmetic calculations

The decimal operator

* Define ;AB = 10A + B Definition df-dec ssss
. .. — . Description: Define the "decimal constructor”, which 1s used
Ex: '13 =10 -1+ 3' to build up "decimal integers” or "numeric terms" in base 10,
53269 =10-(10-24+6)+9 Acsertion
* Base 10, not base 4 Ref Expression
df-dec| 45 = ({10 - 4) + E)
* Structure of a decimal term is as a tree of “low digit” — Assertion
“higher digits” nodes Ref Expression

log2ub|- (log‘2) < (--253 / --365)

* Technically allows “nonstandard” constructions such as
;2;69 = 89 but these are not used in the algorithm

* Ten has two representations —the symbol 10 and ;1 0

Building blocks

Theorem decadd =oos Theorem decmul2e so0: Assertion - Theorem declte w2
Description: Add two numerals ' and Description: The product of a numeral Ref | Expression Description: Comparing two decimal
& (no carry). (Contributed by Mario with a number (with carry). (Contributed Tp6el3|F (7 + 6] = :13 integers (unequal higher places).
Carneiro, 18-Feb-2014) by Mario Carneiro, 18-Feb-2014)) Assertion (Contributed by Mario Carneiro,

Hypotheses Hypotheses Ref | Expression 18-Feb-2014.)
Ref Expression Ref Expression Tt6ed2|H (7 -6) = 42 Hypotheses
decma 1 |- 4 € Mo decmullc.1|- P & My . Ref |Expression
Theorem addcomli =13«
decma? |- 5 € My decmullc.2|- 4 € My - . declt1 |- 4 € Mo
Description: Addition commutes.
decmald |- O e My decmulle 3| 5 € My (Contributed by Mario Carneiro. declt.2 |- 5 € My
decmad |- 0 € My decmullc 4|- W = A5 19-Apr-2015) decltc 3| & & My
decmal - M = A5 decmulle.5|F U € My Hypotheses declic 4|~ I & Mo
decma6 |- &V =.CD decmullc 6| & £ My Ref Expression declte.5(© < 10
decadd |- (A + C)=E decmul2e 7| (P -)+ EY=C addcomi.l [~ 4 e C decltc.6|- A < 5
decadd 8| (5 + D= F decmul2c 8- (F - B) = -ED addcomi? |- 5 e C Assertion
Assertion Assertion addcomli2|- (4 + 5)=C Ref | Expression

Ref Expression Ref Expression Assertion decltc|~ -AC < .50

decadd| (& + M) = EF decmul2c|- (F - V) =-.CD Ref Expression

addcomli|- (5 +) =C

Building blocks

* We can recurse over the tree (list) structure of a term

Theorem declte o7

* The basic algorithms for addition and multiplication can be defined Description: Comparing two decimal
recursively over the structure ﬁ:bi“g%‘;ﬂmhﬁ%:::i
* Algorithms like Karatsuba require splitting the input digit string in half, 18-Feb-2014.)
which cannot be done in one step but can be done with a helper theorem Hypotheses
in O(n) steps Ref [Expression
declt.1 |- 4 € My
* Asymptotics similar to list operations in Lisp decli2 |- B e Mg
declte 3| C & My
* Similar techniques can be applied to store many data structures, like decltc 4| D € Ny
graphs (see konigsberg) declic 5|~ C < 10
decltc 6~ 4 < B
Assertion
Ref | Expression
decltc|F AT < B

http://us.metamath.org/mpegif/konigsberg.html

The algorithm

* Proofs are context free (always the same steps given the same input Theorem decltc s
asse rtiOn) Description: Comparing two decimal
. . . integers (unequal higher places).
* Allows for a simple recursive structure: Decide what theorem to apply (Contributed by Mario Carneiro,
based on the form of the goal, and then prove the resulting subgoals 18-Feb-2014.)
Hypotheses
* We can evaluate terms as part of determining the theorem to apply Ref [Expression

declt.1 |- A £ My
declt2 |- 5 € My
decltc 3|~ & € My

* “Evaluate” here means to convert the term ;;123 to the integer 123, or
evaluate a multiplication or addition using Mathematica’s native

operations decltc 4] D € Mo

* This allows us to fail quickly if we are asked to prove the unprovable decltc.5|- C < 10

* The reverse is also possible, converting 123 to ;;123 dﬁlil:i:g
. L .) . Ref | Expression
Ex: if the goal is of the form ;AB < ;CD and eval(4) # eval(B), then =i

apply decltc (if the goal is true then the subgoals will be too)

http://us.metamath.org/mpegif/decltc.html

12 Onn0 ss30 ik 9e My
13 (10 nn{cm 328 sk dleed
14 (13 mulidlizoe | s (16-1)=:16
15 1ple2 sz a4+ 1) =
The reSU|t 16 Snn() ss3s 2B e My
17 Onnsrss | sHo9e M
Theorem 2exp8 11115 :E_ i ﬁij” ""E‘FFQEEEE
Description: Two to the eighth power 15 256, —_— .
(Contributed by Mario Carneiro, 20-Apr-2015) e s oncnises | sE6EC
Assertion 21 OpbelSoon | sH(946)=:15
Ref | Expression 22 |18.20. 21 addcomlisizs | sF(6+ 3)=:15
2exp8|F (218) = -256 23 18.9.12. 14, 15.16.22 |decaddciooo | 3 H((:16-1) 4+ 9) = -25
24 3nn0 ss33 a2 3e My
Proof of Theorem 2Zexp8 25 |20 mulid2i o0 | sH(1-81=
Step Hyp Ref Expression 26 |25 oveqli sus sH{(1-814+3)=(8+ 3]
1 2000 ss32 22elp 27 6p3eQsms | sH(B4+3) =
2 4nn0 sss4 2h4elh 28 |26.27 eqtri 2050 H(1-8) 4+ =9
3 2 nnOcni 5528 3F4eC 29 616236 co3s a4k (B-8)=38
4 2cn sen1 3F2el 30 [9.8.9.11.9 24 28 29 |decmullcson | b (16 -6) = 96
5 dt2e8sm4 | 3H(4-2)=38 31 [10,8.9. 119, 12, 23 30|decmul2c so0s | 2 (:16 - 16} = 256
6 |3.4.5 mulcomlisxz |2F(2-4)=38 32 [1.2.6.7.31 numexp2x 121 - (218) = 256
7 Dexpd 11113 a2 hH(214) =16 2exp8 $p [- (278) =; ;256 $=
8 1nn0 z231 sl 1e M (€2 ¢5 cdc c6 cl c4 c8 2nn@ 4nn@ nndcni c¢9 1nnd@ 6nn@ 9nn@® cmul co nncni c3
9 6000 5535 . F6e Mg 2¢n cad<.jc 4t2e8 r.nulcomli 2exp4 deccl eqifl mulidli 1ple2 5nn@ 9nn 6nn 9p6el5
— addcomli decaddci 3nn® oveqli 6p3e9 eqtri 6t6e36 decmullc decmul2c numexp2x
10 §= 2 M 2060 a3k 16 = Pl mulid2i) AABCZDCEDCZFGHIFAGFIJSUAUBUCEDVCDVDKVDEDLMUDZLMVDUEZMNEDBAVDEOPKL
11 m 2030 e 15 = =13 MNVDVDVE JUFUGUHKDEBCKUIQDUJQZUKULUMEDKDDRVDMLMVFMUNEDOPZRTPDRTPKVHDRTDVGVBU
OUPUQURUSUTVA $.

Limitations

* This is a limited domain theorem prover
* Can prove any true statement using:
* The symbols 0,1,2,3,4,5,6,7,8,9,10
* Theoperators+ - ; <

* The operators € N, € N, € C.
* Additions are possible for handling e.g. exponentiation

* Most (all?) “numerical” theorems (involving only concrete numbers, not variables) can be

reduced to addition, multiplication, and strict order of nonnegative integers, so this is not a big
restriction

Success stories

* The first version of the arithmetic algorithm was created in Feb 2014
* Used for the proof of bpos (Bertrand’s postulate)

* The second version was made in Apr 2015, concurrent with this paper
(http://arxiv.org/abs/1503.02349)

* Used for the proof of log2ub (log 2 < 2—22), a lemma for birthday (the Birthday problem)

* We don’t need to be afraid of big numbers anymore (i.e. casual usage when convenient)
* Used for the cubic and quartic equations, where numbers like 33 = 27 and 4* = 256 appear

http://us.metamath.org/mpegif/bpos.html
http://arxiv.org/abs/1503.02349
http://us.metamath.org/mpegif/log2ub.html
http://us.metamath.org/mpegif/birthday.html
http://us.metamath.org/mpegif/cubic.html
http://us.metamath.org/mpegif/quartic.html

Why did it take so long?

* Metamath, like many formal systems, is geared toward abstract math
* Most abstract math does not need numbers larger than 10

* Computers are comfortable with bigger numbers than humans

* Automation in Metamath is in its infancy

* This is the first Metamath theorem prover which produces complete proofs
* Metamath does have a step search of depth up to around 3

* Much more is planned, and current work on the new smm proof assistant promises “user scripts” like
HOL proof programs

Flyspeck

* Flyspeck is Tom Hales’ recently completed project to prove the Kepler Conjecture in HOL Light
and Isabelle

* Is it feasible to port Flyspeck to Metamath?
* Not yet

* A Metamath proof verifies in linear time, but the proofs are longer
* The length of a Metamath proof is proportional to the running time of a HOL Light proof

* How to optimize for Metamath
* No searches: you already know the answer!
* Metamath proves NP-hard problems in polynomial time (cf. Luis “offline oracles”)
* Spend more time making the proofs shorter

Round all numbers to the minimum needed to establish an inequality

Questions

