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What is Metamath?

* A computer language for representing mathematical proofs
* The Metamath spec is two pages, one verifier exists in =300 lines of Python

* Eight independent verifiers exist in eight different languages
* Two proof assistants (MM-PA and mmj2) with another (smm) in development

* A project to formalize modern mathematics from a simple foundation

* Four major databases

e ZFC set theory (set.mm)
* Over 25000 proofs, 500K lines, 24M file

* HOL type theory (hol.mm)
* Intuitionistic logic (iset.mm)

* NF set theory (nf.mm)
* Including Specker’s proof of =AC



What is GCH?

* The Generalized Continuum Hypothesis

1) 2%a =X, for every ordinal

2) There are no infinite cardinals m < n < 2™

* Equivalence of (1) and (2) needs the axiom of regularity, which we prefer to avoid when
possible — we use definition (2)




Localizing GCH

* The Generalized Continuum Hypothesis

1) 2%a =X, for every ordinal
2) There are no infinite cardinals m < n < 2™

* Equivalence of (1) and (2) needs the axiom of regularity, which we prefer to avoid when
possible — we use definition (2)

» Define a GCH-set to be a cardinal m that is finite or satisfies =(m < n < 2™) for all cardinals n
* Often written CH(m), Metamath notation is m € GCH
* Then GCH is equivalent to “every set is a GCH-set”, written GCH =V

GCH =FinU {x|[Vy ~(x < y Ay < Px)}



What is AC?

The Axiom of Choice

Many equivalent formulations

The one useful to us is “every set is well-orderable/equinumerous to an ordinal”

Metamath notation for “A is well-orderable” is A € dom card because the cardinality function
is only defined on sets equinumerous to an ordinal

CHOICE & domcard =V



GCH implies AC

* Written in Metamath notation as GCH =V - CHOICE

* What does a local version look like?

« Specker (1954): If m is infinite and CH(m), CH(2™), then 2™ = X&(m), so m is well-orderable
* N(m) is the Hartogs number of m, the set of all ordinals < m
har = (x » {y € On|y < x})
* Metamath version (completed 31 May 2015):
w<AMNAEGCHAP(A) € GCH - har(4) = P(4)

* The source for this work was “Does GCH imply AC locally?” by Akihiro Kanamori and David
Pincus (2002)

* http://math.bu.edu/people/aki/7.pdf

* Aside: Not many formal systems could even state this theorem (HOL too weak, Mizar
too strong)


http://math.bu.edu/people/aki/7.pdf

GCH implies AC

http://us.metamath.org/mpegif/gchhar.html

< Previous Next >

NXo  Metamath Proof Explorer Related heorems

Unicode version

Theorem gchhar 7s:s

Description: A "local" form of gchac 7515. If 4 and £ 4 are GCH-sets, then the Hartogs
number of 4 1s ¢4 (so Z2 4 and a fortior1 4 are well-orderable). The proof is due to
Specker. Theorem 2.1 of [KanamoriPincus]| p. 419. (Contributed by Mario Carneiro,
31-May-2015.)

Assertion

Ref Expression
gchharl- ((w =< AA A€ GCHA 4 € GCH) — (har'd) =~ £ 4)



http://us.metamath.org/mpegif/gchhar.html

Canonical Constructions

* Specker’s proof (via Kanamori & Pincus) uses the lemma that CH(im) implies m + m = m? = m
* If it were not the case, then 2™ < m? < Seq(m) where Seq(m) is the set of finite sequences

* Halbeisen & Shelah (1994): If w < X then 21Xl £ |Seq(X)]
* Requires a bijection (or at least an injection) F,:Seq(a) - «

* “For infinite, well-orderable Y, we have |Y| = |Seq(Y)|; in fact, to every infinite well-ordering of a set
Y we can canonically associate a bijection between Y and Seq(Y).” — Kanamori & Pincus

* This is the sort of thing that makes a formalizer’s job hard!

* This bijection is Corollary 3 of Halbeisen & Shelah:

* “Proof: Use the Cantor Normal Form Theorem, Corollary 2, order the finite subsets of @ and then use
the Cantor-Bernstein Theorem.”



Cantor Normal Form

* Textbook version:
Every ordinal number a can be uniquely written as wf1 ¢; + wPz ¢, + -+ + wPk ¢}, where k is
a natural number, ¢4, ¢, ..., Ci are positive integers, and f; > 5, > -+ > [} = 0 are ordinal
numbers. (Wikipedia)

* Metamath version (cantnf):
Define the map CNF, 5 from the set agin of finitely supported functions f: f = «a to the
ordinal exponential a” as CNF, 3 (f) = 2yesupp(f) a’f(y). Then CNF, g is a bijection, and in
fact an order isomorphism from (agin, <) to (af, €) (where f < g when f # g and the

maximal y with f(y) # g(y) satisfies f(y) < g(y)).
* |tis easier for us to work with finitely supported function spaces than parallel sequences


http://us.metamath.org/mpegif/cantnf.html

Reversing Cantor Normal Form

Corollary 2 of Halbeisen & Shelah
c fa=wbPic, +wP2cy+ -+ wPkcp, then definingad = wPkcp + -+ wP2 cy + WPl ey, a =~ @

Ordinal absorption laws:
ca+f =Fwhena<w’<p
e aw’ =wwhen0<a<wand0 <y

Ordinal equinumerosity laws:
ca+faUf=pF+a
cafraXf =pfa

B L

I/
~ ] ~ NI . ~ ]!
* Ogip = af (Cantor normal form), soa = a' and § = ' implies af ~ g'P

Important: all equinumerosity relations here are canonical —a = f here actually means F:a —
f is a bijection where F is some complicated term



Reversing Cantor Normal Form

* Corollary 2 of Halbeisen & Shelah
c fa=wbPic, +wP2cy+ -+ wPkcp, then definingad = wPkcp + -+ wP2 cy + WPl ey, a =~ @

* Ordinal absorption laws:
ca+f =Fwhena<w’<p
e aw’ =wwhen0<a<wand0 <y

 The ordinal absorption laws imply ¢ ~ a = wPk Cp = Cka)ﬁk = wPk, so every ordinal is
(definably) equinumerous to a power of w



Reversing Cantor Normal Form

Theorem cnfcom3 e
Description: Any infinite ordinal £ is equinumerous to a power of w. (We are being careful
here to show explicit biyjections rather than simple equinumerosity because we want a
uniform construction for cnfeom3c s674.) (Contributed by Mario Carneiro, 30-May-2015.)

Hypotheses

Ref Expression
cnfcom.s |- .5 = dom (w CNF 4)
cnfcoma |- (v — 4 € On)

Theorem cnfcom3c a4

enfeomb |- (ig — B e(w T, A)) Description: Wrap the construction of cnfcom3 s672 into an existence quantifier.
cnfeom.f |- 7 = (~{w CNF A)E) For any w C &, there 1s a bijection from & to some power of w. Furthermore, this
cnfcom g |- G = Ordlsol E, (= 7V 4 1)) bijection 1s canonical , which means that we can find a single function  which
cnfcomh |- 7 =seqf(k €V, 2 €V — (M +, 2)), @) will give such bijections for every & less than some arbitrarily large bound 4.
cnfeomt |- 7 =seqif(k €V, fEV = X, &) (Contributed by Mario Cameiro, 30-May-2015.)

cnfcomm |- M = (& Ta (G'E)) = (F (G R)) Assertion

enfeomk | X =z w—(dm f 4 )] U~z € dom £ (A 5 2)])
cnfeom w |- W7 = (G _Jdom &)
enfcom3.1|- (# — w C B) enfeom3c|- (4 e On - Jg¥Wh e A{w C b — Fw e (Cn '\ L) ¢ b)kbthlw T, w)))
cnfeomx |- X ={ue(FW), v elwl W ((FW) o v) 44 ul)
enfeomy | ¥ = (2 € (FW), v € (@ b W) > (= b W) % 2) 42 2)
confcomn |- N =((X o ~Y) o (T dom &)

Assertion

Ref Expression

cnfeom3|- (v — NiBEL(w T, W)

Ref Expression




a X a = «, definably

aXa=~w'Xw ==Y =>W)=~=~a

* The real proof uses definable bijections instead of equinumerosity (existence of a bijection)

* Compare:
Theorem infxpen s Theorem infxpenc2 s:oo
Description: Every infinite ordinal is equinumerous to its cross product. Proposition Description: Existence form of infxpenc szes. A "uniform” or "canonical”
10.39 of [TakeutiZaring] p. 94, whose proof we follow closely. The key 1dea 1s to version of infxpen sz, asserting the existence of a single function 7 that
show that the relation /7 is a well-ordering of (On x On) with the additional property simultaneously demonstrates product idempotence of all ordinals below a given
that /i-initial segments of [ x =) (where = is a limit ordinal) are of cardinality at bound. (Contributed by Marnio Carneiro, 30-May-2015))
most = (Contributed by Mario Carneiro, 9-Mar-2013)) Assertion
Assertion Ref Expression
Ref Expression infxpenc2|- (4 € On — Jg¥Wh € A (w C b — (g'0):(b x b)ZLE))

infxpen|- (4 € On A w C A) - (4 x A) = 4)




a X a = «, definably

aXa~w X = ~w=()~0=~«a

* The real proof uses definable bijections instead of equinumerosity (existence of a bijection)

* We can use this to construct an injection from Seq(a) — a by recursion, given a bijection
gaxa—-a:

fN =900  fayaz .., a) = gk g(f(ay, az, ., ax_1)), @)




The de Bruijn Factor

* The de Bruijn factor is the quotient of the size of a formalization of a mathematical text and the
size of its informal original (Wiedijk)

* Because this project was principally the near-complete formalization of a single text (Kanamori
& Pincus), it is possible to calculate a de Bruijn factor for the work

* Because the TeX for Kanamori & Pincus was not available, Google OCR of the PDF was used instead,
which may make the calculated factors higher than they should be since some formatting was lost

* Metamath has a surprisingly low de Bruijn factor! (Compare intrinsic factors 3.1, 3.7, 4.1 from

[Wiedijk])
* Why?
e iiormal " formal e bun ractor
e 18092 60106  apparent 3.32
compressed  [REEE 19579  intrinsic  2.59


http://www.cs.ru.nl/~freek/factor/factor.pdf

Questions




