

GCH implies AC a Metamath Formalization

MARIO CARNEIRO

22 JULY 2015

What is Metamath?

- A computer language for representing mathematical proofs
 - The Metamath spec is two pages, one verifier exists in ≈300 lines of Python
 - Eight independent verifiers exist in eight different languages
 - Two proof assistants (MM-PA and mmj2) with another (smm) in development
- A project to formalize modern mathematics from a simple foundation
- Four major databases
 - ZFC set theory (set.mm)
 - Over 25000 proofs, 500K lines, 24M file
 - HOL type theory (hol.mm)
 - Intuitionistic logic (iset.mm)
 - NF set theory (nf.mm)
 - Including Specker's proof of ¬AC

What is GCH?

- The Generalized Continuum Hypothesis
- 1) $2^{\aleph_{\alpha}} = \aleph_{\alpha+1}$ for every ordinal α
- 2) There are no infinite cardinals $\mathfrak{m} < \mathfrak{n} < 2^{\mathfrak{m}}$
- Equivalence of (1) and (2) needs the axiom of regularity, which we prefer to avoid when possible we use definition (2)

Localizing GCH

- The Generalized Continuum Hypothesis
- 1) $2^{\aleph_{\alpha}} = \aleph_{\alpha+1}$ for every ordinal α
- 2) There are no infinite cardinals $m < \pi < 2^m$
- Equivalence of (1) and (2) needs the axiom of regularity, which we prefer to avoid when possible – we use definition (2)
- Define a GCH-set to be a cardinal \mathfrak{m} that is finite or satisfies $\neg(\mathfrak{m} < \mathfrak{n} < 2^{\mathfrak{m}})$ for all cardinals \mathfrak{n}
 - Often written CH(m), Metamath notation is $m \in GCH$
 - Then GCH is equivalent to "every set is a GCH-set", written GCH = V

$$GCH = Fin \cup \{x | \forall y \neg (x < y \land y < \mathcal{P}x)\}\$$

What is AC?

- The Axiom of Choice
- Many equivalent formulations
- The one useful to us is "every set is well-orderable/equinumerous to an ordinal"
- Metamath notation for "A is well-orderable" is $A \in \text{dom } \text{card } \text{because } \text{the } \text{cardinality } \text{function}$ is only defined on sets equinumerous to an ordinal

CHOICE \leftrightarrow dom card = V

GCH implies AC

- Written in Metamath notation as GCH = V → CHOICE
- What does a local version look like?
- Specker (1954): If m is infinite and CH(m), $CH(2^m)$, then $2^m = \aleph(m)$, so m is well-orderable
 - $\aleph(m)$ is the Hartogs number of m, the set of all ordinals $\leq m$

$$har = (x \mapsto \{y \in On | y \le x\})$$

Metamath version (completed 31 May 2015):

$$\omega \leq A \land A \in GCH \land \mathcal{P}(A) \in GCH \rightarrow har(A) \approx \mathcal{P}(A)$$

- The source for this work was "Does GCH imply AC locally?" by Akihiro Kanamori and David Pincus (2002)
 - http://math.bu.edu/people/aki/7.pdf
- Aside: Not many formal systems could even state this theorem (HOL too weak, Mizar too strong)

GCH implies AC

http://us.metamath.org/mpegif/gchhar.html

Metamath Proof Explorer

< Previous Next >
Related theorems
Unicode version

Theorem gchhar 7513

Description: A "local" form of gchac 7515. If A and $\mathscr{P}A$ are GCH-sets, then the Hartogs number of A is $\mathscr{P}A$ (so $\mathscr{P}A$ and a fortiori A are well-orderable). The proof is due to Specker. Theorem 2.1 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.)

Assertion

Ref	Expression		
gchhar	$\vdash ((\omega \preccurlyeq A \land A \in GCH \land \mathscr{P}A \in GCH) \rightarrow (\text{har'}A) \approx \mathscr{P}A)$		

Canonical Constructions

- Specker's proof (via Kanamori & Pincus) uses the lemma that CH(m) implies $m + m = m^2 = m$
 - If it were not the case, then $2^m \le m^2 \le Seq(m)$ where Seq(m) is the set of finite sequences
- Halbeisen & Shelah (1994): If $\omega \leq X$ then $2^{|X|} \not\leq |\text{Seq}(X)|$
 - Requires a bijection (or at least an injection) F_{α} : Seq $(\alpha) \rightarrow \alpha$
 - "For infinite, well-orderable Y, we have |Y| = |Seq(Y)|; in fact, to every infinite well-ordering of a set Y we can canonically associate a bijection between Y and Seq(Y)." Kanamori & Pincus
 - This is the sort of thing that makes a formalizer's job hard!
- This bijection is Corollary 3 of Halbeisen & Shelah:
 - "Proof: Use the Cantor Normal Form Theorem, Corollary 2, order the finite subsets of α and then use the Cantor-Bernstein Theorem."

Cantor Normal Form

- Textbook version: Every ordinal number α can be uniquely written as $\omega^{\beta_1} c_1 + \omega^{\beta_2} c_2 + \cdots + \omega^{\beta_k} c_k$, where k is a natural number, c_1, c_2, \ldots, c_k are positive integers, and $\beta_1 > \beta_2 > \cdots > \beta_k \geq 0$ are ordinal numbers. (Wikipedia)
- Metamath version (cantnf): Define the map $\mathrm{CNF}_{\alpha,\beta}$ from the set $\alpha_{\mathrm{Fin}}^{\beta}$ of finitely supported functions $f\colon\beta\to\alpha$ to the ordinal exponential α^{β} as $\mathrm{CNF}_{\alpha,\beta}(f)=\sum_{\gamma\in\mathrm{supp}(f)}\alpha^{\gamma}f(\gamma)$. Then $\mathrm{CNF}_{\alpha,\beta}$ is a bijection, and in fact an order isomorphism from $(\alpha_{\mathrm{Fin}}^{\beta},\lhd)$ to (α^{β},\in) (where $f\vartriangleleft g$ when $f\not=g$ and the maximal γ with $f(\gamma)\neq g(\gamma)$ satisfies $f(\gamma)\lessdot g(\gamma)$).
 - It is easier for us to work with finitely supported function spaces than parallel sequences

Reversing Cantor Normal Form

- Corollary 2 of Halbeisen & Shelah
 - If $\alpha = \omega^{\beta_1} c_1 + \omega^{\beta_2} c_2 + \cdots + \omega^{\beta_k} c_k$, then defining $\bar{\alpha} = \omega^{\beta_k} c_k + \cdots + \omega^{\beta_2} c_2 + \omega^{\beta_1} c_1$, $\alpha \approx \bar{\alpha}$
- Ordinal absorption laws:
 - $\alpha + \beta = \beta$ when $\alpha < \omega^{\gamma} \le \beta$
 - $\alpha\omega^{\gamma} = \omega^{\gamma}$ when $0 < \alpha < \omega$ and $0 < \gamma$
- Ordinal equinumerosity laws:
 - $\alpha + \beta \approx \alpha \sqcup \beta \approx \beta + \alpha$
 - $\alpha\beta \approx \alpha \times \beta \approx \beta\alpha$
 - $\alpha_{\rm Fin}^{\beta} \approx \alpha^{\beta}$ (Cantor normal form), so $\alpha \approx \alpha'$ and $\beta \approx \beta'$ implies $\alpha^{\beta} \approx \alpha'^{\beta'}$
- Important: all equinumerosity relations here are canonical $-\alpha \approx \beta$ here actually means $F: \alpha \rightarrow \beta$ is a bijection where F is some complicated term

Reversing Cantor Normal Form

- Corollary 2 of Halbeisen & Shelah
 - If $\alpha = \omega^{\beta_1} c_1 + \omega^{\beta_2} c_2 + \cdots + \omega^{\beta_k} c_k$, then defining $\bar{\alpha} = \omega^{\beta_k} c_k + \cdots + \omega^{\beta_2} c_2 + \omega^{\beta_1} c_1$, $\alpha \approx \bar{\alpha}$
- Ordinal absorption laws:
 - $\alpha + \beta = \beta$ when $\alpha < \omega^{\gamma} \le \beta$
 - $\alpha\omega^{\gamma} = \omega^{\gamma}$ when $0 < \alpha < \omega$ and $0 < \gamma$
- The ordinal absorption laws imply $\alpha \approx \tilde{\alpha} = \omega^{\beta_k} c_k \approx c_k \omega^{\beta_k} = \omega^{\beta_k}$, so every ordinal is (definably) equinumerous to a power of ω

Reversing Cantor Normal Form

Theorem cnfcom3 6672

Description: Any infinite ordinal B is equinumerous to a power of ω . (We are being careful here to show explicit bijections rather than simple equinumerosity because we want a uniform construction for <u>cnfcom3c</u> 6674.) (Contributed by Mario Carneiro, 30-May-2015.)

Hypotheses

Hypotheses			
Ref	Expression		
cnfcom.s	$\vdash S = dom (\omega CNF A)$		
cnfcom.a	$\vdash (\varphi \to A \in On)$		
cnfcom.b	$\vdash (\varphi \to B \in (\omega \uparrow_o A))$		
cnfcom.f	$\vdash F = ((\omega \text{ CNF } A)^*B)$		
cnfcom.g	$\vdash G = \text{OrdIso}(E, (F''(V \setminus 1_o)))$		
cnfcom.h	$\vdash H = \operatorname{seq}_{\omega}((k \in V, z \in V \mapsto (M +_{\circ} z)), \emptyset)$		
cnfcom.t	$\vdash T = \operatorname{seq}_{\omega}((k \in V, f \in V \mapsto K), \emptyset)$		
cnfcom.m	$\vdash M = ((\omega \uparrow_{\circ} (G'k)) \cdot_{\circ} (F'(G'k)))$		
cnfcom.k	$\vdash K = ((\mathbf{x} \in M \mapsto (\mathrm{dom}\ \mathbf{f} +_{\circ} \mathbf{x})) \cup (\mathbf{x} \in \mathrm{dom}\ \mathbf{f} \mapsto (M +_{\circ} \mathbf{x})))$		
cnfcom.w	$\vdash W = (G' \bigcup \text{dom } G)$		
cnfcom3.1	$\vdash (\varphi \to \omega \subseteq B)$		
cnfcom.x	$\vdash X = (\mathbf{u} \in (F'W), \mathbf{v} \in (\omega \uparrow_{o} W) \mapsto (((F'W) \cdot_{o} \mathbf{v}) +_{o} \mathbf{u}))$		
cnfcom.y	$\vdash Y = (\mathbf{u} \in (F'W), \mathbf{v} \in (\omega \uparrow_o W) \mapsto (((\omega \uparrow_o W) \cdot_o \mathbf{u}) +_o \mathbf{v}))$		
cnfcom.n	$\vdash N = ((X \circ Y) \circ (T' \text{dom } G))$		

Assertion

Ref	Expression			
cnfcom3	$\vdash (\varphi \to N:B_{\frac{1-1}{\text{onto}}}(\omega \uparrow_o W))$			

Theorem cnfcom3c 6674

Description: Wrap the construction of $\underline{\text{cnfcom3}}$ 6672 into an existence quantifier. For any $\omega \subseteq b$, there is a bijection from b to some power of ω . Furthermore, this bijection is *canonical*, which means that we can find a single function g which will give such bijections for every b less than some arbitrarily large bound A. (Contributed by Mario Carneiro, 30-May-2015.)

Assertion

Ref	Expression		
cnfcom3c	$\vdash (A \in \bigcirc n \to \exists g \forall b \in A (\omega \subseteq b \to \exists w \in (\bigcirc n \setminus 1_o)(g'b): b \xrightarrow{1-1} (\omega \uparrow_o w)))$		

$\alpha \times \alpha \approx \alpha$, definably

$$\alpha \times \alpha \approx \omega^{\gamma} \times \omega^{\gamma} \approx \omega^{\gamma 2} \approx \omega^{2\gamma} = (\omega^{2})^{\gamma} \approx \omega^{\gamma} \approx \alpha$$

- The real proof uses definable bijections instead of equinumerosity (existence of a bijection)
 - Compare:

Theorem infxpen 6892

Description: Every infinite ordinal is equinumerous to its cross product. Proposition 10.39 of [TakeutiZaring] p. 94, whose proof we follow closely. The key idea is to show that the relation R is a well-ordering of $(On \times On)$ with the additional property that R-initial segments of $(x \times x)$ (where x is a limit ordinal) are of cardinality at most x. (Contributed by Mario Carneiro, 9-Mar-2013.)

Assertion

Ref	Expression
infxpen	$\vdash ((A \in \bigcirc n \land \omega \subseteq A) \to (A \times A) \approx A)$

Theorem infxpenc2 6899

Description: Existence form of <u>infxpenc</u> 6895. A "uniform" or "canonical" version of <u>infxpen</u> 6892, asserting the existence of a single function *g* that simultaneously demonstrates product idempotence of all ordinals below a given bound. (Contributed by Mario Carneiro, 30-May-2015.)

Assertion

Ref	Expression
infxpenc2	$\vdash (A \in On \to \exists g \forall b \in A (\omega \subseteq b \to (g'b): (b \times b) \xrightarrow{l-1} b))$

$\alpha \times \alpha \approx \alpha$, definably

$$\alpha \times \alpha \approx \omega^{\gamma} \times \omega^{\gamma} \approx \omega^{\gamma 2} \approx \omega^{2\gamma} = (\omega^{2})^{\gamma} \approx \omega^{\gamma} \approx \alpha$$

- The real proof uses definable bijections instead of equinumerosity (existence of a bijection)
- We can use this to construct an injection from Seq(α) $\rightarrow \alpha$ by recursion, given a bijection $g: \alpha \times \alpha \rightarrow \alpha$:

$$f(\langle \rangle) = g(0,0) \qquad f(\langle \alpha_1, \alpha_2, \dots, \alpha_k \rangle) = g(k, g(f(\langle \alpha_1, \alpha_2, \dots, \alpha_{k-1} \rangle), \alpha_k))$$

The de Bruijn Factor

- The de Bruijn factor is the quotient of the size of a formalization of a mathematical text and the size of its informal original (Wiedijk)
- Because this project was principally the near-complete formalization of a single text (Kanamori & Pincus), it is possible to calculate a de Bruijn factor for the work
 - Because the TeX for Kanamori & Pincus was not available, Google OCR of the PDF was used instead,
 which may make the calculated factors higher than they should be since some formatting was lost
- Metamath has a surprisingly low de Bruijn factor! (Compare intrinsic factors 3.1, 3.7, 4.1 from [Wiedijk])
 - Why?

informal fo		formal	de Bruijn Factor	
uncompressed	18092	60106	apparent	3.32
compressed	7545	19579	intrinsic	2.59

Questions