| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > hbxfr | Unicode version | ||
| Description: Transfer a hypothesis builder to an equivalent expression. |
| Ref | Expression |
|---|---|
| hbxfr.1 |
|
| hbxfr.2 |
|
| hbxfr.3 |
|
| hbxfr.4 |
|
| Ref | Expression |
|---|---|
| hbxfr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbxfr.3 |
. . . 4
| |
| 2 | 1 | ax-cb1 29 |
. . 3
|
| 3 | 2 | id 25 |
. 2
|
| 4 | hbxfr.1 |
. . 3
| |
| 5 | hbxfr.2 |
. . 3
| |
| 6 | hbxfr.4 |
. . . 4
| |
| 7 | 6, 2 | adantr 50 |
. . 3
|
| 8 | 4, 5, 1, 7 | hbxfrf 97 |
. 2
|
| 9 | 3, 3, 8 | syl2anc 19 |
1
|
| Colors of variables: type var term |
| Syntax hints: kc 5
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ceq 46 ax-leq 62 |
| This theorem depends on definitions: df-ov 65 |
| This theorem is referenced by: hbth 99 |
| Copyright terms: Public domain | W3C validator |