| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > weu | Unicode version | ||
| Description: There exists unique type. |
| Ref | Expression |
|---|---|
| weu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wex 129 |
. . . 4
| |
| 2 | wal 124 |
. . . . . 6
| |
| 3 | wv 58 |
. . . . . . . . 9
| |
| 4 | wv 58 |
. . . . . . . . 9
| |
| 5 | 3, 4 | wc 45 |
. . . . . . . 8
|
| 6 | wv 58 |
. . . . . . . . 9
| |
| 7 | 4, 6 | weqi 68 |
. . . . . . . 8
|
| 8 | 5, 7 | weqi 68 |
. . . . . . 7
|
| 9 | 8 | wl 59 |
. . . . . 6
|
| 10 | 2, 9 | wc 45 |
. . . . 5
|
| 11 | 10 | wl 59 |
. . . 4
|
| 12 | 1, 11 | wc 45 |
. . 3
|
| 13 | 12 | wl 59 |
. 2
|
| 14 | df-eu 123 |
. 2
| |
| 15 | 13, 14 | eqtypri 71 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-cb1 29 ax-refl 39 |
| This theorem depends on definitions: df-al 116 df-an 118 df-im 119 df-ex 121 df-eu 123 |
| This theorem is referenced by: euval 134 |
| Copyright terms: Public domain | W3C validator |