| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > axgen | GIF version | ||
| Description: Rule of Generalization. See e.g. Rule 2 of [Hamilton] p. 74. |
| Ref | Expression |
|---|---|
| axgen.1 | ⊢ ⊤⊧R |
| Ref | Expression |
|---|---|
| axgen | ⊢ ⊤⊧(∀λx:α R) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axgen.1 | . 2 ⊢ ⊤⊧R | |
| 2 | 1 | alrimiv 141 | 1 ⊢ ⊤⊧(∀λx:α R) |
| Colors of variables: type var term |
| Syntax hints: kc 5 λkl 6 ⊤kt 8 ⊧wffMMJ2 11 ∀tal 112 |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ded 43 ax-ceq 46 ax-beta 60 ax-distrc 61 ax-leq 62 ax-hbl1 93 ax-17 95 ax-inst 103 |
| This theorem depends on definitions: df-ov 65 df-al 116 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |