| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > hbth | GIF version | ||
| Description: Hypothesis builder for a theorem. |
| Ref | Expression |
|---|---|
| hbth.1 | ⊢ B:α |
| hbth.2 | ⊢ R⊧A |
| Ref | Expression |
|---|---|
| hbth | ⊢ R⊧[(λx:α AB) = A] |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbth.2 | . . 3 ⊢ R⊧A | |
| 2 | 1 | ax-cb2 30 | . 2 ⊢ A:∗ |
| 3 | hbth.1 | . 2 ⊢ B:α | |
| 4 | wtru 40 | . . 3 ⊢ ⊤:∗ | |
| 5 | 1 | eqtru 76 | . . 3 ⊢ R⊧[⊤ = A] |
| 6 | 4, 5 | eqcomi 70 | . 2 ⊢ R⊧[A = ⊤] |
| 7 | 1 | ax-cb1 29 | . . 3 ⊢ R:∗ |
| 8 | 4, 3, 7 | a17i 96 | . 2 ⊢ R⊧[(λx:α ⊤B) = ⊤] |
| 9 | 2, 3, 6, 8 | hbxfr 98 | 1 ⊢ R⊧[(λx:α AB) = A] |
| Colors of variables: type var term |
| Syntax hints: ∗hb 3 kc 5 λkl 6 = ke 7 ⊤kt 8 [kbr 9 ⊧wffMMJ2 11 wffMMJ2t 12 |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ded 43 ax-ceq 46 ax-leq 62 ax-17 95 |
| This theorem depends on definitions: df-ov 65 |
| This theorem is referenced by: ax4g 139 |
| Copyright terms: Public domain | W3C validator |