| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > notval2 | GIF version | ||
| Description: Another way two write ¬ A, the negation of A. |
| Ref | Expression |
|---|---|
| notval2.1 | ⊢ A:∗ |
| Ref | Expression |
|---|---|
| notval2 | ⊢ ⊤⊧[(¬ A) = [A = ⊥]] |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wnot 128 | . . 3 ⊢ ¬ :(∗ → ∗) | |
| 2 | notval2.1 | . . 3 ⊢ A:∗ | |
| 3 | 1, 2 | wc 45 | . 2 ⊢ (¬ A):∗ |
| 4 | 2 | notval 135 | . 2 ⊢ ⊤⊧[(¬ A) = [A ⇒ ⊥]] |
| 5 | wfal 125 | . . . . 5 ⊢ ⊥:∗ | |
| 6 | wim 127 | . . . . . . 7 ⊢ ⇒ :(∗ → (∗ → ∗)) | |
| 7 | 6, 2, 5 | wov 64 | . . . . . 6 ⊢ [A ⇒ ⊥]:∗ |
| 8 | 7, 2 | simpr 23 | . . . . 5 ⊢ ([A ⇒ ⊥], A)⊧A |
| 9 | 7, 2 | simpl 22 | . . . . 5 ⊢ ([A ⇒ ⊥], A)⊧[A ⇒ ⊥] |
| 10 | 5, 8, 9 | mpd 146 | . . . 4 ⊢ ([A ⇒ ⊥], A)⊧⊥ |
| 11 | 2 | pm2.21 143 | . . . . 5 ⊢ ⊥⊧A |
| 12 | 11, 7 | adantl 51 | . . . 4 ⊢ ([A ⇒ ⊥], ⊥)⊧A |
| 13 | 10, 12 | ded 74 | . . 3 ⊢ [A ⇒ ⊥]⊧[A = ⊥] |
| 14 | 13 | ax-cb2 30 | . . . . . 6 ⊢ [A = ⊥]:∗ |
| 15 | 14, 2 | simpr 23 | . . . . 5 ⊢ ([A = ⊥], A)⊧A |
| 16 | 14, 2 | simpl 22 | . . . . 5 ⊢ ([A = ⊥], A)⊧[A = ⊥] |
| 17 | 15, 16 | mpbi 72 | . . . 4 ⊢ ([A = ⊥], A)⊧⊥ |
| 18 | 17 | ex 148 | . . 3 ⊢ [A = ⊥]⊧[A ⇒ ⊥] |
| 19 | 13, 18 | dedi 75 | . 2 ⊢ ⊤⊧[[A ⇒ ⊥] = [A = ⊥]] |
| 20 | 3, 4, 19 | eqtri 85 | 1 ⊢ ⊤⊧[(¬ A) = [A = ⊥]] |
| Colors of variables: type var term |
| Syntax hints: ∗hb 3 kc 5 = ke 7 ⊤kt 8 [kbr 9 kct 10 ⊧wffMMJ2 11 wffMMJ2t 12 ⊥tfal 108 ¬ tne 110 ⇒ tim 111 |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ded 43 ax-ceq 46 ax-beta 60 ax-distrc 61 ax-leq 62 ax-distrl 63 ax-hbl1 93 ax-17 95 ax-inst 103 |
| This theorem depends on definitions: df-ov 65 df-al 116 df-fal 117 df-an 118 df-im 119 df-not 120 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |