| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > oveq2 | GIF version | ||
| Description: Equality theorem for binary operation. |
| Ref | Expression |
|---|---|
| oveq.1 | ⊢ F:(α → (β → γ)) |
| oveq.2 | ⊢ A:α |
| oveq.3 | ⊢ B:β |
| oveq2.4 | ⊢ R⊧[B = T] |
| Ref | Expression |
|---|---|
| oveq2 | ⊢ R⊧[[AFB] = [AFT]] |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq.1 | . 2 ⊢ F:(α → (β → γ)) | |
| 2 | oveq.2 | . 2 ⊢ A:α | |
| 3 | oveq.3 | . 2 ⊢ B:β | |
| 4 | oveq2.4 | . . . 4 ⊢ R⊧[B = T] | |
| 5 | 4 | ax-cb1 29 | . . 3 ⊢ R:∗ |
| 6 | 5, 2 | eqid 73 | . 2 ⊢ R⊧[A = A] |
| 7 | 1, 2, 3, 6, 4 | oveq12 90 | 1 ⊢ R⊧[[AFB] = [AFT]] |
| Colors of variables: type var term |
| Syntax hints: → ht 2 = ke 7 [kbr 9 ⊧wffMMJ2 11 wffMMJ2t 12 |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ceq 46 |
| This theorem depends on definitions: df-ov 65 |
| This theorem is referenced by: imval 136 orval 137 anval 138 ecase 153 exlimdv2 156 exlimd 171 axpow 208 axun 209 |
| Copyright terms: Public domain | W3C validator |