| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anbi123i | GIF version | ||
| Description: Join 3 biconditionals with conjunction. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| bi3.1 | ⊢ (𝜑 ↔ 𝜓) |
| bi3.2 | ⊢ (𝜒 ↔ 𝜃) |
| bi3.3 | ⊢ (𝜏 ↔ 𝜂) |
| Ref | Expression |
|---|---|
| 3anbi123i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ (𝜓 ∧ 𝜃 ∧ 𝜂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | bi3.2 | . . . 4 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | 1, 2 | anbi12i 447 | . . 3 ⊢ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃)) |
| 4 | bi3.3 | . . 3 ⊢ (𝜏 ↔ 𝜂) | |
| 5 | 3, 4 | anbi12i 447 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜏) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) |
| 6 | df-3an 921 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ ((𝜑 ∧ 𝜒) ∧ 𝜏)) | |
| 7 | df-3an 921 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) | |
| 8 | 5, 6, 7 | 3bitr4i 210 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ (𝜓 ∧ 𝜃 ∧ 𝜂)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 102 ↔ wb 103 ∧ w3a 919 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem depends on definitions: df-bi 115 df-3an 921 |
| This theorem is referenced by: 3anbi1i 1129 3anbi2i 1130 3anbi3i 1131 syl3anb 1212 ne3anior 2333 |
| Copyright terms: Public domain | W3C validator |