![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3ioran | GIF version |
Description: Negated triple disjunction as triple conjunction. (Contributed by Scott Fenton, 19-Apr-2011.) |
Ref | Expression |
---|---|
3ioran | ⊢ (¬ (𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioran 701 | . . 3 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) | |
2 | 1 | anbi1i 445 | . 2 ⊢ ((¬ (𝜑 ∨ 𝜓) ∧ ¬ 𝜒) ↔ ((¬ 𝜑 ∧ ¬ 𝜓) ∧ ¬ 𝜒)) |
3 | ioran 701 | . . 3 ⊢ (¬ ((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (¬ (𝜑 ∨ 𝜓) ∧ ¬ 𝜒)) | |
4 | df-3or 920 | . . 3 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
5 | 3, 4 | xchnxbir 638 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (¬ (𝜑 ∨ 𝜓) ∧ ¬ 𝜒)) |
6 | df-3an 921 | . 2 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒) ↔ ((¬ 𝜑 ∧ ¬ 𝜓) ∧ ¬ 𝜒)) | |
7 | 2, 5, 6 | 3bitr4i 210 | 1 ⊢ (¬ (𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 102 ↔ wb 103 ∨ wo 661 ∨ w3o 918 ∧ w3a 919 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 |
This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 |
This theorem is referenced by: ne3anior 2333 |
Copyright terms: Public domain | W3C validator |