| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3jao | GIF version | ||
| Description: Disjunction of 3 antecedents. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3jao | ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) → ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3or 920 | . 2 ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜃) ↔ ((𝜑 ∨ 𝜒) ∨ 𝜃)) | |
| 2 | jao 704 | . . . 4 ⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜓) → ((𝜑 ∨ 𝜒) → 𝜓))) | |
| 3 | jao 704 | . . . 4 ⊢ (((𝜑 ∨ 𝜒) → 𝜓) → ((𝜃 → 𝜓) → (((𝜑 ∨ 𝜒) ∨ 𝜃) → 𝜓))) | |
| 4 | 2, 3 | syl6 33 | . . 3 ⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜓) → ((𝜃 → 𝜓) → (((𝜑 ∨ 𝜒) ∨ 𝜃) → 𝜓)))) |
| 5 | 4 | 3imp 1132 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) → (((𝜑 ∨ 𝜒) ∨ 𝜃) → 𝜓)) |
| 6 | 1, 5 | syl5bi 150 | 1 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) → ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 661 ∨ w3o 918 ∧ w3a 919 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 |
| This theorem is referenced by: 3jaob 1233 3jaoi 1234 3jaod 1235 |
| Copyright terms: Public domain | W3C validator |