![]() |
Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > alsconv | GIF version |
Description: There is an equivalence between the two "all some" forms. (Contributed by David A. Wheeler, 22-Oct-2018.) |
Ref | Expression |
---|---|
alsconv | ⊢ (∀!𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀!𝑥 ∈ 𝐴𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2353 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
2 | 1 | anbi1i 445 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 𝑥 ∈ 𝐴) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∃𝑥 𝑥 ∈ 𝐴)) |
3 | df-alsc 10790 | . 2 ⊢ (∀!𝑥 ∈ 𝐴𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 𝑥 ∈ 𝐴)) | |
4 | df-alsi 10789 | . 2 ⊢ (∀!𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∃𝑥 𝑥 ∈ 𝐴)) | |
5 | 2, 3, 4 | 3bitr4ri 211 | 1 ⊢ (∀!𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀!𝑥 ∈ 𝐴𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∀wal 1282 ∃wex 1421 ∈ wcel 1433 ∀wral 2348 ∀!walsi 10787 ∀!walsc 10788 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 df-ral 2353 df-alsi 10789 df-alsc 10790 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |