| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > an31s | GIF version | ||
| Description: Swap two conjuncts in antecedent. (Contributed by NM, 31-May-2006.) |
| Ref | Expression |
|---|---|
| an32s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| an31s | ⊢ (((𝜒 ∧ 𝜓) ∧ 𝜑) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an32s.1 | . . . 4 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 2 | 1 | exp31 356 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | com13 79 | . 2 ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
| 4 | 3 | imp31 252 | 1 ⊢ (((𝜒 ∧ 𝜓) ∧ 𝜑) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem is referenced by: genpassl 6714 genpassu 6715 |
| Copyright terms: Public domain | W3C validator |