| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anabsan | GIF version | ||
| Description: Absorption of antecedent with conjunction. (Contributed by NM, 24-Mar-1996.) (Revised by NM, 18-Nov-2013.) |
| Ref | Expression |
|---|---|
| anabsan.1 | ⊢ (((𝜑 ∧ 𝜑) ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| anabsan | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.24 387 | . 2 ⊢ (𝜑 ↔ (𝜑 ∧ 𝜑)) | |
| 2 | anabsan.1 | . 2 ⊢ (((𝜑 ∧ 𝜑) ∧ 𝜓) → 𝜒) | |
| 3 | 1, 2 | sylanb 278 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: anabss1 540 anabss5 542 anandis 556 iddvds 10208 1dvds 10209 |
| Copyright terms: Public domain | W3C validator |