| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-pre-mulgt0 | GIF version | ||
| Description: The product of two positive reals is positive. Axiom for real and complex numbers, justified by theorem axpre-mulgt0 7053. (Contributed by NM, 13-Oct-2005.) |
| Ref | Expression |
|---|---|
| ax-pre-mulgt0 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . . 4 class 𝐴 | |
| 2 | cr 6980 | . . . 4 class ℝ | |
| 3 | 1, 2 | wcel 1433 | . . 3 wff 𝐴 ∈ ℝ |
| 4 | cB | . . . 4 class 𝐵 | |
| 5 | 4, 2 | wcel 1433 | . . 3 wff 𝐵 ∈ ℝ |
| 6 | 3, 5 | wa 102 | . 2 wff (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) |
| 7 | cc0 6981 | . . . . 5 class 0 | |
| 8 | cltrr 6985 | . . . . 5 class <ℝ | |
| 9 | 7, 1, 8 | wbr 3785 | . . . 4 wff 0 <ℝ 𝐴 |
| 10 | 7, 4, 8 | wbr 3785 | . . . 4 wff 0 <ℝ 𝐵 |
| 11 | 9, 10 | wa 102 | . . 3 wff (0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) |
| 12 | cmul 6986 | . . . . 5 class · | |
| 13 | 1, 4, 12 | co 5532 | . . . 4 class (𝐴 · 𝐵) |
| 14 | 7, 13, 8 | wbr 3785 | . . 3 wff 0 <ℝ (𝐴 · 𝐵) |
| 15 | 11, 14 | wi 4 | . 2 wff ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵)) |
| 16 | 6, 15 | wi 4 | 1 wff ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) |
| Colors of variables: wff set class |
| This axiom is referenced by: axmulgt0 7184 |
| Copyright terms: Public domain | W3C validator |