| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > baibr | GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by NM, 11-Jul-1994.) |
| Ref | Expression |
|---|---|
| baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| baibr | ⊢ (𝜓 → (𝜒 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baib.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | baib 861 | . 2 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| 3 | 2 | bicomd 139 | 1 ⊢ (𝜓 → (𝜒 ↔ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: rbaibr 864 pm5.44 867 exmoeu2 1989 r19.9rmv 3333 dfopg 3568 brinxp 4426 elioo5 8956 prmind2 10502 |
| Copyright terms: Public domain | W3C validator |