| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bi3ant | GIF version | ||
| Description: Construct a biconditional in antecedent position. (Contributed by Wolf Lammen, 14-May-2013.) |
| Ref | Expression |
|---|---|
| bi3ant.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| bi3ant | ⊢ (((𝜃 → 𝜏) → 𝜑) → (((𝜏 → 𝜃) → 𝜓) → ((𝜃 ↔ 𝜏) → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi1 116 | . . 3 ⊢ ((𝜃 ↔ 𝜏) → (𝜃 → 𝜏)) | |
| 2 | 1 | imim1i 59 | . 2 ⊢ (((𝜃 → 𝜏) → 𝜑) → ((𝜃 ↔ 𝜏) → 𝜑)) |
| 3 | bi2 128 | . . 3 ⊢ ((𝜃 ↔ 𝜏) → (𝜏 → 𝜃)) | |
| 4 | 3 | imim1i 59 | . 2 ⊢ (((𝜏 → 𝜃) → 𝜓) → ((𝜃 ↔ 𝜏) → 𝜓)) |
| 5 | bi3ant.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 6 | 5 | imim3i 60 | . 2 ⊢ (((𝜃 ↔ 𝜏) → 𝜑) → (((𝜃 ↔ 𝜏) → 𝜓) → ((𝜃 ↔ 𝜏) → 𝜒))) |
| 7 | 2, 4, 6 | syl2im 38 | 1 ⊢ (((𝜃 → 𝜏) → 𝜑) → (((𝜏 → 𝜃) → 𝜓) → ((𝜃 ↔ 𝜏) → 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: bisym 223 |
| Copyright terms: Public domain | W3C validator |